SI Base Units

| MEASURE | SI UNIT | SYMBOL | DEFINITION |
| :--- | :--- | :---: | :--- |
| mass | kilogram | kg | quantity of matter |
| length | meter | m | distance between 2 points |
| temperature | kelvin | K | average kinetic energy |
| amount | mole | mol | $6.0221415 \times 10^{23}$ |
| time | second | s | interval between 2 occurrences |
| electric current | ampere | A | flow of electrons |
| luminous intensity | candela | cd | brightness |

## Common SI Derived Units

| MEASURE | UNIT | ABBREV. | BASE UNITS | DEFINITION |
| :--- | :--- | :--- | :--- | :--- |
| volume (V) | cubic meter | $\mathrm{m}^{3}$ | $\mathrm{~m}^{3}$ | length in 3-dimensions |
| density (D) | $\mathrm{kg} / \mathrm{L}$ | $\rho($ "rho") | $\mathrm{kg} / \mathrm{m}^{3}$ | mass per volume |
| concentration | $\mathrm{mol} / \mathrm{L}$ | M | $\mathrm{mol} / \mathrm{m}^{3}$ | amount per volume |
| force | newton | N | $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$ | attraction between 2 bodies |
| work | Joule | J | $\mathrm{N} \cdot \mathrm{m}$ | force acting through a distance |
| energy | Joule | J | $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$ | Total E = kinetic + potential |
| frequency | Hertz | Hz | $\mathrm{s}^{-1}$ | cycles per second |
| activity <br> (radioactivity) | Becquerel | Bq | $\mathrm{s}^{-1}$ | decays per second |
| pressure | Pascal | Pa | $\mathrm{N} / \mathrm{m}^{2}$ | force per area |
| electric: <br> charge <br> potential <br> resistance | Coulomb | C | $\mathrm{sh} \cdot \mathrm{A}$ | charge of l-A current in l-sec <br> electric potential difference |

## Other non-SI Units and Equalities

| MEASURE | CONVERSIONS |
| :--- | :--- |
| mass | l ounce $(\mathrm{oz})=.28.349 \mathrm{~g} ; 1$ pound $(\mathrm{lbs})=453.59 \mathrm{~g} ; 2.2046 \mathrm{lbs}=1 \mathrm{~kg} ;$ |
| length | 1 mile $(\mathrm{mi})=1.6093 \mathrm{~km} ; 1$ inch $(\mathrm{in})=2.54 \mathrm{~cm}($ exact $) ; 1$ Ångstrom $=10^{-10} \mathrm{~cm}$ |
| volume | 1.0567 quart $(\mathrm{qt})=$.1 Liter $(\mathrm{L}) ; 1 \mathrm{gal}=3.7854 \mathrm{~L} ; 1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$ |
| temperature | $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$ |
| energy | 1 calorie $(\mathrm{cal})=4.1840 \mathrm{~J} ; 1,000 \mathrm{cal}=1 \mathrm{kcal}=1($ "food" $)$ Calorie |
| pressure | 1 atmosphere $(\mathrm{atm})=101,325.0 \mathrm{~Pa}=760.00 \mathrm{~mm} \mathrm{Hg}($ torr $)=1.0133 \mathrm{bar}=14.696 \mathrm{lb} / \mathrm{in}^{2}$ |

