Calculations In Chemistry

A Note to Students

The goal of these lessons is to help you solve calculations in first-year chemistry. This is only one part of a course in chemistry, but it is often the most challenging.

Provisions: A spiral notebook is suggested as a place to write your work when solving the problems in these lessons. You will also need

- two packs of 1003×5 index cards (two or more colors are preferred) plus a small assortment of rubber bands, and
- a pack of large (3 to 6 inch long) sticky notes to use as cover sheets.

Choosing a Calculator: As you solve problems, use the same calculator that you will be allowed to use during tests, to learn and practice the rules for that calculator before tests.
Many courses will not allow the use of a graphing calculator or other calculators with extensive memory during tests. If no type of calculator is specified for your course, any inexpensive calculator with a $1 / x$ or x^{-1}, y^{x} or \wedge, \log or 10^{x}, and \ln functions will be sufficient for most calculations in first-year chemistry.

Buy two identical calculators if possible. If one becomes broken or lost, you will have a familiar backup if the bookstore is sold out later in the term.

When to Start: You will receive the maximum benefit from these lessons by completing the lessons on a topic before it is addressed in lecture.
Where to Start: The order of these lessons may not always match the order in which topics are covered in your course. If you are using these modules as part of a course, complete the lessons in the order in which they are assigned by your instructor.

If you are using these lessons "on your own" to assist with a course,

- First, determine the topics that will be covered on your next graded problem set, quiz, or test.
- Find those topics in the Table of Contents.
- Download the modules that include the topics.
- Find the prerequisite lessons for the topic, listed at the beginning of the module or lesson. Download and print those lessons. Do the prerequisites, then the topics related to your next graded assignments.
- Follow the instructions on "How to Use These Lessons" on page 1.

If you begin these lessons after the start of your course, as time permits, review prior topics starting with Module 1. You will need all of these introductory modules for later topics -and for your final exam.

Check back for updates at www.ChemReview.Net .

Table of Contents

* \star * \star *

Volume 1

How to Use These Lessons 1
Module 1 - Scientific Notation 2
Lesson 1A: Moving the Decimal 3
Lesson 1B: Calculations Using Exponential Notation 9
Lesson 1C: Tips for Exponential Calculations 16
Lesson 1D: Special Project --The Atoms (Part 1) 23
Module 2 - The Metric System 25
Lesson 2A: Metric Fundamentals 25
Lesson 2B: Metric Prefix Formats 32
Lesson 2C: Cognitive Science -- and Flashcards 37
Lesson 2D: Calculations With Units 43
Module 3 - Significant Figures 48
Lesson 3A: Rules for Significant Figures 48
Lesson 3B: \quad Sig Figs -- Special Cases 53
Lesson 3C: Sig Fig Summary and Practice 56
Lesson 3D: The Atoms -Part 2 59
Module 4 - Conversion Factors 60
Lesson 4A: Conversion Factor Basics 60
Lesson 4B: Single Step Conversions 63
Lesson 4C: Multi-Step Conversions 67
Lesson 4D: English/Metric Conversions. 69
Lesson 4E: Ratio Unit Conversions 72
Lesson 4F: The Atoms -Part 3 77
Lesson 4G: Review Quiz For Modules 1-4 78
Module 5 - Word Problems 80
Lesson 5A: Answer Units -- Single Or Ratio? 80
Lesson 5B: \quad Mining The DATA 82
Lesson 5C: Solving For Single Units 85
Lesson 5D: Finding the Given 90
Lesson 5E: \quad Some Chemistry Practice 93
Lesson 5F: Area and Volume Conversions 95
Lesson 5G: Densities of Solids: Solving Equations 101
Module 6 - Atoms, Ions, and Periodicity 108
Lesson 6A: Atoms 108
Lesson 6B: The Nucleus, Isotopes, and Atomic Mass 113
Lesson 6C: Atoms, Compounds, and Formulas. 121
Lesson 6D: The Periodic Table 126
Lesson 6E: A Flashcard Review System 130
Lesson 6F: The Atoms -Part 4 132
Module 7 - Writing Names and Formulas 133
Lesson 7A: Naming Elements and Covalent Compounds 133
Lesson 7B: Naming Ions 138
Lesson 7C: Names and Formulas for Ionic Compounds 149
Lesson 7D: Naming Acids 161
Lesson 7E: Review Quiz For Modules 5-7 164
Module 8 - Grams and Moles 168
Lesson 8A: The Mole 168
Lesson 8B: Grams Per Mole (Molar Mass) 169
Lesson 8C: Converting Between Grams and Moles 172
Lesson 8D: Converting Particles, Moles, and Grams 176
Module 9 - Mole Applications. 182
Lesson 9A: Fractions and Percentages 182
Lesson 9B: Empirical Formulas 186
Lesson 9C: Empirical Formulas from Mass or \% Mass 187
Lesson 9D: Mass Fraction, Mass Percent, Percent Composition 194
Module 10 - Balanced Equations and Stoichiometry 201
Lesson 10A: Chemical Reactions and Equations 201
Lesson 10B: Balancing Equations 204
Lesson 10C: Using Coefficients -- Molecules to Molecules 210
Lesson 10D: Mole to Mole Conversions 212
Lesson 10E: Conversion Stoichiometry 215
Lesson 10F: Percent Yield 222
Lesson 10G: Finding the Limiting Reactant 227
Lesson 10H: Final Mixture Amounts - and RICE Tables 234
Lesson 10I: Review Quiz For Modules 8-10 248
Module 11 - Molarity 251
Lesson 11A: Ratio Unit Review 251
Lesson 11B: Word Problems with Ratio Answers 252
Lesson 11C: Molarity 258
Lesson 11D: Conversions and Careers 264
Lesson 11E: Units and Dimensions 268
Lesson 11F: Ratios versus Two Related Amounts 274
Lesson 11G: Solving Problems With Parts 279
Module 12 - Molarity Applications 290
Lesson 12A: Dilution 290
Lesson 12B: Ion Concentrations 300
Lesson 12C: Solution Stoichiometry 307
Lesson 12D: Solution Reactions and Limiting Reactants 310
Lesson 12E: Reaction Stoichiometry For Ratio Units 315
Lesson 12F: Review Quiz For Modules 11-12 323
Module 13 - Ionic Equations and Precipitates 326
Lesson 13A: Predicting Solubility for Ionic Compounds 326
Lesson 13B: Total and Net Ionic Equations 330
Lesson 13C: Predicting Precipitation 334
Lesson 13D: Precipitate and Gravimetric Calculations 341
Module 14 - Acid-Base Neutralization 349
Lesson 14A: Ions in Acid-Base Neutralization 349
Lesson 14B: Balancing Hydroxide Neutralization 353
Lesson 14C: Acid-Hydroxide Neutralization Calculations 361
Lesson 14D: Neutralization Calculations in Parts 367
Lesson 14E: Carbonate Neutralization 374
Module 15 - Redox Reactions 382
Lesson 15A: Oxidation Numbers 382
Lesson 15B: Balancing Charge 387
Lesson 15C: Oxidizing and Reducing Agents 389
Lesson 15D: Balancing Redox Using Oxidation Numbers 393
Lesson 15E: Redox Stoichiometry 398
Module 16 - Half-Reaction Balancing 402
Lesson 16A: Constructing Half-Reactions - The CA-WHe! Method 402
Lesson 16B: Balancing By Adding Half-Reactions 408
Lesson 16C: Separating Redox Into Half-Reactions 411
Lesson 16D: Balancing Redox With Spectators Present 415
Lesson 16E: Review Quiz For Modules 13-16 421
Volume 2
Module 17 - Ideal Gases 425
Lesson 17A: Gas Fundamentals 425
Lesson 17B: Gases at STP 429
Lesson 17C: Complex Unit Cancellation 435
Lesson 17D: The Ideal Gas Law and Solving Equations 440
Lesson 17E: Choosing Consistent Units 443
Lesson 17F: Density, Molar Mass, and Choosing Equations 448
Lesson 17G: Using the Combined Equation 455
Lesson 17H: Gas Law Summary and Practice 461
Module 18 - Gas Labs, Gas Reactions 466
Lesson 18A: Charles' Law; Graphing Direct Proportions 466
Lesson 18B: Boyle's Law; Graphs of Inverse Proportions 473
Lesson 18C: Avogadro's Hypothesis; Gas Stoichiometry 476
Lesson 18D: Dalton's Law of Partial Pressures 485
Module 19 - Kinetic Molecular Theory 493
Lesson 19A: Squares and Square Roots 493
Lesson 19B: Kinetic Molecular Theory 501
Lesson 19C: Converting to SI Base Units 504
Lesson 19D: KMT Calculations 509
Lesson 19E: Graham's Law 519
Module 20 - Graphing 523
Lesson 20A: Graphing Fundamentals 523
Lesson 20B: The Specific Equation for a Line 532
Lesson 20C: Graphing Experimental Data 542
Lesson 20D: Deriving Equations From Linear Data 551
Lesson 20E: Linear Equations Not Directly Proportional 562
Lesson 20F: Graphing Inverse Proportions 567
Module 21 - Phases Changes and Energy 577
Lesson 21A: Phases and Phase Changes 577
Lesson 21B: Specific Heat Capacity and Equations 590
Lesson 21C: Water, Energy, and Consistent Units 598
Lesson 21D: Calculating Joules Using Unit Cancellation 603
Lesson 21E: Calorimetry 609
Module 22 - Heats Of Reaction ($\mathbf{\Delta H}$) 617
Lesson 22A: Energy, Heat, and Work 617
Lesson 22B: Exo- And Endothermic Reactions 625
Lesson 22C: Adding ΔH Equations (Hess's Law) 630
Lesson 22D: Heats of Formation and Element Formulas 636
Lesson 22E: Using Summation to Find ΔH 644
Module 23 - Light and Spectra 649
Lesson 23A: Waves 649
Lesson 23B: Waves and Consistent Units 654
Lesson 23C: Planck's Constant 659
Lesson 23D: DeBroglie's Wavelength 663
Lesson 23E: The Hydrogen Atom Spectrum 668
Lesson 23F: The Wave Equation Model 674
Lesson 23G: Quantum Numbers 676
Module 24 - Electron Configuration 680
Lesson 24A: The Multi-Electron Atom 680
Lesson 24B: Shorthand Electron Configurations 684
Lesson 24C: Abbreviated Electron Configurations 687
Lesson 24D: The Periodic Table and Electron Configuration 691
Lesson 24E: Electron Configurations: Exceptions and Ions 696
Module 25 - Bonding 701
Lesson 25A: Covalent Bonds 701
Lesson 25B: Molecular Shapes and Bond Angles. 706
Lesson 25C: Electronegativity 714
Lesson 25D: Molecular Polarity 717
Lesson 25E: Solubility 724
Lesson 25F: Double and Triple Bonds 728
Lesson 25G: Ion Dot Diagrams. 733
Lesson 25H: Orbital Models for Bonding 735
Module 26 - Mixtures and Colligative Properties 740
Lesson 26A: Measures of Solution Composition 740
Lesson 26B: Parts Per Million746
Lesson 26C: Colligative Properties and Gas Pressures 750
Lesson 26D: Colligative Properties of Solutions 758
Module 27 - Kinetics: Rate Laws 768
Lesson 27A: Kinetics Fundamentals 768
Lesson 27B: Rate Laws 773
Lesson 27C: Integrated Rate Law --Zero Order 782
Lesson 27D: Base 10 Logarithms 790
Lesson 27E: Natural Log Calculations799
Lesson 27F: Integrated Rate Law -- First Order 807
Lesson 27G: Reciprocal Math 817
Lesson 27H: Integrated Rate Law -- Second Order 822
Lesson 27I: Half-Life Calculations 829
Volume 3
Module 28 - Equilibrium 837
Lesson 28A: Le Châtelier's Principle 838
Lesson 28B: Powers and Roots of Exponential Notation 850
Lesson 28C: Equilibrium Constants 860
Lesson 28D: K Values 867
Lesson 28E: $\quad K_{p}$ Calculations 870
Lesson 28F: $\quad K$ and Rice Moles Tables 876
Lesson 28G: K Calculations From Initial Concentrations 883
Lesson 28H: Q: The Reaction Quotient 889
Lesson 28I: Calculations Using K and Q 892
Lesson 28J: Solving Quadratic Equations 899
Module 29 - Acid-Base Fundamentals 910
Lesson 29A: Acid-Base Math Review 910
Lesson 29B: $\quad K_{w}$ Calculations: H^{+}and OH^{-} 913
Lesson 29C: Strong Acid Solutions 917
Lesson 29D: The [OH^{-}] in Strong Acid Solutions 922
Lesson 29E: Strong Base Solutions 925
Lesson 29F: The pH System 928
Module 30 - Weak Acids and Bases 939
Lesson 30A: $\quad K_{a}$ Math and Approximation Equations 939
Lesson 30B: Weak Acids and K_{a} Expressions 943
Lesson 30C: $\quad K_{a}$ Calculations 950
Lesson 30D: Percent Dissociation and Shortcuts 959
Lesson 30E: Solving K_{a} Using the Quadratic Formula 963
Lesson 30F: Weak Bases and K_{b} Calculations 966
Lesson 30G: Polyprotic Acids 976
Module 31 - Brønsted-Lowry Definitions 982
Lesson 31A: Brønsted-Lowry Acids and Bases 982
Lesson 31B: Which Acids and Bases Will React? 986
Module 32 - $\mathbf{p H}$ of Salts 995
Lesson 32A: The Acid-Base Behavior of Salts 995
Lesson 32B: Will A Salt Acid-Base React? 1002
Lesson 32C: Calculating the pH of a Salt Solution 1006
Lesson 32D: Salts That Contain Amphoteric Ions 1011
Module 33 - Buffers 1016
Lesson 33A: Acid-Base Common Ions, Buffers 1016
Lesson 33B: Buffer Example 1019
Lesson 33C: Buffer Components 1025
Lesson 33D: Methodical Buffer Calculations 1029
Lesson 33E: Buffer Quick Steps 1033
Lesson 33F: The Henderson-Hasselbalch Equation 1040
Module 34 - pH During Titration 1047
Lesson 34A: pH In Mixtures 1047
Lesson 34B: pH After Neutralization 1052
Lesson 34C: Distinguishing Types of Acid-Base Calculations 1062
Lesson 34D: pH During Strong-Strong Titration 1067
Lesson 34E: Titration pH: Weak by Strong 1079
Module 35 - Solubility Equilibrium 1091
Lesson 35A: Slightly Soluble Ionic Compounds 1091
Lesson 35B: Ksp Calculations 1094
Lesson 35C: Solubility and Common Ions. 1102
Lesson 35D: pH and Solubility 1109
Lesson 35E: Quantitative Precipitation Prediction. 1113
Module 36 - Thermodynamics. 1125
Lesson 36A: Review: Energy and Heats of Reaction 1125
Lesson 36B: Entropy and Spontaneity 1130
Lesson 36C: Free Energy 1138
Lesson 36D: Standard State Values 1144
Lesson 36E: Adding ΔG° Equations 1149
Lesson 36F: Free Energy at Non-Standard Conditions 1152
Lesson 36G: Free Energy and K 1157
Module 37 - Electrochemistry 1164
Lesson 37A: Redox Fundamentals 1164
Lesson 37B: Charges and Electrical Work 1171
Lesson 37C: Standard Reduction Potentials 1175
Lesson 37D: Non-Standard Potentials: The Nernst Equation 1178
Lesson 37E: Predicting Which Redox Reactions Go 1184
Lesson 37F: Calculating Cell Potential 1191
Module 38 - Electrochemical Cells 1201
Lesson 38A: Cells and Batteries 1201
Lesson 38B: Anodes and Cathodes 1211
Lesson 38C: Depleted Batteries and Concentration Cells 1220
Lesson 38D: Electrolysis 1228
Lesson 38E: Amperes and Electrochemical Calculations 1231
Module 39 - Nuclear Chemistry 1240
Lesson 39A: The Nucleus - Review 1240
Lesson 39B: Radioactive Decay Reactions. 1245
Lesson 39C: Fission and Fusion 1250
Lesson 39D: Radioactive Half-Life Calculations 1253

How to Use These Lessons

1. Read the lesson. Work the questions (Q). As you read, use this method.

- As you turn to two new facing pages in this book, cover the page on the right with a sheet of paper.
- As you start any new page, if you see 5 stars (* * * * *) on the page, cover the text below the stars. As a cover sheet, use either overlapping sticky notes $\square \square$ or a folded sheet of paper.
- In your problem notebook, write your answer to the question (\mathbf{Q}) above the * * * * *. Then slide down the cover sheet to the next set of \star * \star * \star and check your answer. If you need a hint, read a part of the answer, then re-cover the answer and try the problem again.

2. Memorize the rules, then do the Practice.

The goal in learning is to move rules and concepts into memory. To begin, when working questions (\mathbf{Q}) in a lesson, you may look back at the rules, but make an effort to commit the rules to memory before starting the Practice problems.
Try every other problem of a Practice set on the first day and the remaining problems in your next study session. This spacing will help you to remember new material. On both days, try to work the Practice without looking back at the rules.
Answers to the Practice are the end of each lesson. If you need a hint, read a part of the answer and try again.
3. How many Practice problems should you do? It depends on your background. These lessons are intended to

- refresh your memory on topics you once knew, and
- fill-in the gaps for topics that are less familiar.

If you know a topic well, read the lesson for review, then do a few problems on each Practice set. Be sure to do the last problem (usually the most challenging).
If a topic is unfamiliar, do more problems.
4. Work Practice problems at least 3 days a week. Chemistry is cumulative. To solve problems, what you learn early you will need in memory later. To retain what you learn, space your study of a topic over several days.

Science has found that your memory tends to retain what it uses repeatedly, but to remember for only a few days what you do not practice over several days. If you wait until a quiz deadline to study, what you learn may remain in memory for a day or two, but on later tests and exams, it will tend to be forgotten.
Begin lessons on new topics early, preferably before the topic is covered in lecture.
5. Memorize what must be memorized. Use flashcards and other memory aids. Chemistry is not easy, but you will achieve success if you work at a steady pace.

If you have previously taken a course in chemistry, many topics in Modules 1 to 4 will be review. Therefore: if you can pass the pre-test for a lesson, skip the lesson. If you need a bit of review to refresh your memory, do the last few problems of each Practice set. On topics that are less familiar, complete more Practice.

Module 1 - Scientific Notation

Timing: Module 1 should be done as soon as you are assigned problems that use exponential notation. If possible, do these lessons before attempting problems in other textbooks.

Additional Math Topics

Powers and roots of exponential notation are covered in Lesson 28B.
Complex units such as \rightarrow are covered in Lesson 17C.

$$
\frac{\operatorname{atm} \bullet \mathrm{L}}{(\mathrm{~mole})\left(\frac{\mathrm{atm} \bullet \mathrm{~L}}{\operatorname{mole} \bullet \mathrm{~K}}\right)}
$$

Those lessons may be done at any time after Module 1.

Calculators and Exponential Notation

To multiply 492×7.36, the calculator is a useful tool. However, when using exponential notation, you will make fewer mistakes if you do as much exponential math as you can without a calculator. These lessons will review the rules for doing exponential math "in your head."

The majority of problems in Module 1 will not require a calculator. Problems that require a calculator will be clearly identified.
You are encouraged to try complex problems with the calculator after you have tried them without. This should help you to decide when, and when not, to use a calculator.

Notation Terminology

In science, we often deal with very large and very small numbers.
For example: A drop of water contains about 1,500,000,000,000,000,000,000 molecules.
An atom of neon has a radius of about $\mathbf{0 . 0 0 0} \mathbf{0 0 0} \mathbf{0 0 7} \mathbf{0}$ centimeters.
When values are expressed as "regular numbers," such as 123 or 0.024 or the numbers above, they are said to be in fixed decimal or fixed notation.

Very large and small numbers are more clearly expressed in exponential notation: writing a number times 10 to a whole-number power. For the measurements above, we can write

- A drop of water contains about $1.5 \times 1 \mathbf{1 0}^{\mathbf{2 1}}$ molecules.
- An atom of neon gas has a radius of about 7.0×10^{-9} centimeters.

Values represented in exponential notation can be described as having three parts.
For example, in -6.5×10^{-4},

- The - in front is the sign.
- the 6.5 is termed the significand or decimal or digit or mantissa or coefficient.
- The $10^{\mathbf{- 4}}$ is the exponential term: the base is $\mathbf{1 0}$ and the exponent (or power) is $\mathbf{- 4}$. In these lessons we will refer to the two parts of exponential notation after the sign as the significand and exponential term.

You should also learn (and use) any alternate terminology preferred in your course.

Lesson 1A: Moving the Decimal

Pretest: Do not use a calculator. If you get a perfect score on this pretest, skip to Lesson 1B. Otherwise, complete Lesson 1A. Answers are at the end of each lesson.

1. Write these in scientific notation.
a. $9,400 \times 10^{3}=$ \qquad b. $0.042 \times 10^{6}=$ \qquad
c. $-0.0067 \times 10^{-2}=$ \qquad d. $-77=$ \qquad
2. Write these answers in fixed decimal notation.
a. $14 / 10,000=$
b. $0.194 \times 1000=$
c. $47^{0}=$

Powers of 10

Below are the numbers that correspond to powers of 10 . Note the relationship between the exponents and position of the decimal point in the fixed decimal numbers as you go down the sequence.

$$
\begin{aligned}
& 10^{6}=1,000,000 \\
& 10^{3}=1,000=10 \times 10 \times 10 \\
& 10^{2}=100 \\
& 10^{\mathbf{1}}=10 \\
& 10^{0}=1 \\
& 10^{-1}=0.1 \\
& 10^{-2}=0.01=1 / 10^{2}=1 / 100 \\
& 10^{-3}=0.001
\end{aligned} \quad \text { (Anything to the zero power equals one.) }
$$

When converting from powers of 10 to fixed decimal numbers, use these steps.

1. To change a positive power of 10 to a fixed decimal number,

- write $\mathbf{1}$, then after 1 add the number of zeros equal to the exponent.

Example: $10^{2}=\underset{\sim \cup \uparrow}{100} \quad$ Another way to state this rule:

- From 1, move the decimal to the right by the number of places in the exponent.

2. To convert a negative power of 10 to fixed notation,

- From 1, move the decimal to the left by the number of places equal to the exponent of 10 after its negative sign.
Question: $\quad 10^{\mathbf{- 2}}=\quad$ (fill in the fixed decimal number.)
* * * * * (See How To Use These Lessons, Point 1, on page 1).

$$
\text { Answer: } \quad 10^{-2}=\mathbf{0 . 0 1}
$$

Practice A: Write your answers, then check them at the end of this lesson.

1. Write these as regular numbers without an exponential term.
a. $10^{4}=$ \qquad
b. $10^{-4}=$ \qquad
c. $10^{7}=$ \qquad
d. $10^{-5}=$ \qquad e. $10^{0}=$ \qquad

Multiplying and Dividing By 10, 100, 1000

To multiply or divide by numbers that are positive whole-number powers of 10 , such as 100 or 10,000 , use these rules.

1. When multiplying a number by a $10,100,1000$, etc., move the decimal to the right by the number of zeros in the 10, 100, or 1000.

Examples: $72 \times 100=7,200 \quad-0.0624 \times 1,000=-62.4$
2. When dividing a number by 10,100 , or 1000 , etc., move the decimal to the left by the number of zeros in the 10, 100, or 1000.

Q: Answer as fixed decimal numbers: $34.6 / 1000=\quad 0.47 / 100=$

* * * * *

Answers: $\quad 34.6 / 1000=\underset{\text { quuv }}{0.0346} \quad 0.47 / 100=0.0047$
3. When writing a number that has a value between -1 and 1 (a number that "begins with a decimal point"), always place a zero in front of the decimal point.

Example: Do not write .42 or -.74 ; do write 0.42 or $\mathbf{- 0 . 7 4}$
During your written calculations, the zero in front helps in seeing your decimals.

Practice B: Write your answers, then check them at the end of this lesson.

1. When dividing by 1,000 move the decimal to the \qquad by \qquad places.
2. Write these answers as fixed decimal numbers.
a. $0.42 \times 1000=$
b. $63 / 100=$
c. $-74.6 / 10,000=$

Converting Exponential Notation to Numbers

To convert from exponential notation (such as -4×10^{3}) to fixed decimal notation ($-4,000$), use these rules.

1. The sign in front does not change. The sign is independent of the terms after the sign.
2. If, in the exponential notation, the significand is multiplied by a

- positive power of 10 , move the decimal point in the significand to the right by the same number of places as the value of the exponent;

$$
\text { Examples: } 2 \times 10^{2}=\underset{\sim \cup \uparrow}{200} \quad-\underset{\sim \cup \cup \uparrow}{0.0033} \times 10^{3}=-3.3
$$

- negative power of 10 , move the decimal point in the significand to the left by the same number of places as the number after the minus sign of the exponent.

$$
\text { Examples: } 2 \times 10^{-2}=\underset{\text { 个uv }}{0.02} \quad-7,653.8 \times 10^{-3}=\underset{\uparrow \cup v u}{7.6538}
$$

Practice C: Convert these to fixed decimal notation.

1. $3 \times 10^{3}=$ \qquad 2. $5.5 \times 10^{-4}=$ \qquad
2. $0.77 \times 10^{6}=$
3. $-95 \times 10^{-4}=$ \qquad

Changing Exponential to Scientific Notation

In chemistry, it is often required that numbers that are very large or very small be written in scientific notation. One reason to use scientific notation is that it makes values easier to compare: there are many equivalent ways to write a value in exponential notation, but only one correct way to write the value in scientific notation.

Scientific notation is simply a special case of exponential notation in which the significand is 1 or greater, but less than 10, and is multiplied by 10 to a whole-number power.
Another way to say this: in scientific notation, the decimal point in the significand must be after the first digit that is not a zero.

Example: -0.057×10^{-2} in scientific notation is written as -5.7×10^{-4}.
The decimal must be moved to after the first number that is not a zero: the 5 .

To convert from exponential to scientific notation,

- move the decimal in the significand to after the first digit that is not a zero, then
- adjust the exponent to keep the same numeric value.

When moving a decimal point,

1. The sign in front does not change.
2. If moving the decimal Y times to make the significand larger, make the power of 10 smaller by a count of Y .

Example. Converting exponential to scientific notation: $\underset{\sim \cup \uparrow}{0.045} \times 10^{5}=4.5 \times 10^{3}$
The decimal must be after the 4 . Move the decimal two times to the right. This makes the significand 100 times larger. To keep the same numeric value, lower the exponent by 2 , making the 10^{X} value 100 times smaller.
3. When moving the decimal Y times to make the significand smaller, make the power of 10 larger by a count of Y .
Q. Convert to scientific notation: $-8,544 \times 10^{-7}=$

$$
\text { Answer: } \quad-8,544 \times 10^{-7}=\underset{\text { 个uvu }}{-8.544 \times 10^{-4}}
$$

You must move the decimal 3 places to the left. This makes the significand 1,000 times smaller. To keep the same numeric value, increase the exponent by 3 , making the 10^{X} value 1,000 times larger.
Remember, 10^{-4} is 1,000 times larger than 10^{-7}.
It helps to recite, every time you move a decimal, for the terms after the sign in front:

> "If one gets smaller, the other gets larger. If one gets larger, the other gets smaller."

Practice D: Change these to scientific notation. Check answers at the end of the lesson.

1. $5,420 \times 10^{3}=$
2. $0.020 \times 10^{3}=$ \qquad
3. $0.00492 \times 10^{-12}=$ \qquad
4. $0.0067 \times 10^{-4}=$ \qquad
5. $-870 \times 10^{-4}=$ \qquad
6. $-602 \times 10^{21}=$ \qquad

Converting Numbers to Scientific Notation

To convert regular (fixed decimal) numbers to exponential notation, use these rules.

- Any number to the zero power equals one.
$2^{0}=1 . \quad 42^{0}=1 . \quad$ Exponential notation most often uses $10^{0}=1$.
- Since any number can be multiplied by one without changing its value, any number can be multiplied by 100 without changing its value.

Example: $42=42 \times 1=42 \times 10^{0}$ in exponential notation

$$
=4.2 \times 10^{1} \text { in scientific notation. }
$$

To convert fixed notation to scientific notation, the steps are

1. Add $\times \mathbf{1 0}^{\mathbf{0}}$ after the number.
2. Apply the rules that convert exponential to scientific notation.

- Do not change the sign in front.
- Write the decimal after the first digit that is not a zero.
- Adjust the power of 10 to compensate for moving the decimal.

Try: Q. Using the steps above, convert these to scientific notation.
a. 943
b. -0.00036

Answers: $\quad 943=943 \times 10^{0}=9.43 \times 10^{\mathbf{2}}$ in scientific notation.

$$
-0.00036=-0.00036 \times 10^{0}=-3.6 \times 10^{-4} \text { in scientific notation. }
$$

When converting to scientific notation, a positive fixed decimal number that is

- larger than one have a positive exponent (zero and above) in scientific notation;
- between zero and one have a negative exponent in scientific notation; and
- the number of places that the decimal in a number moves is the number after the sign in its exponent.

These same rules apply to numbers after a negative sign in front. The sign in front is independent of the numbers after it.

Note how these three rules apply to the two answers above.
Note also that in both exponential and scientific notation, whether the sign in front is positive or negative has no relation to the sign of the exponential term. The sign in front shows whether a value is positive or negative. The exponential term indicates only the position of the decimal point.

Practice E

1. Which lettered parts in Problem 2 below must have exponentials that are negative when written in scientific notation?
2. Change these to scientific notation.
a. $6,280=$ \qquad b. $0.0093=$ \qquad
c. $\quad 0.741=$ \qquad d. $-1,280,000=$ \qquad
3. Complete the problems in the pretest at the beginning of this lesson.

Study Summary

In your problem notebook,

- write a list of rules in this lesson that were unfamiliar or you found helpful.
- Condense your wording, number the points, and write and recite the rules until you can write them from memory.
Then complete the problems below.

The Role of Practice

Do as many Practice problems as you need to feel "quiz ready."

- If the material in a lesson is relatively easy review, do the last problem on each series of similar problems.
- If the lesson is less easy, put a check by (\checkmark) and then work every $2^{\text {nd }}$ or $3^{\text {rd }}$ problem. If you miss one, do some similar problem in the set.
- Save a few problems for your next study session -- and quiz/test review.

During Examples and \mathbf{Q} problems, you may look back at the rules, but practice writing and recalling new rules from memory before starting the Practice.
If you use the Practice to learn the rules, it will be difficult to find time for all of the problems you will need to do. If you use Practice to apply rules that are in memory, you will need to solve fewer problems to be "quiz ready."

Practice F: Check (\checkmark) and do every other letter. If you miss one, do another letter for that set. Save a few parts for your next study session.

1. Write these answers in fixed decimal notation.
a. $924 / 10,000=$
b. $24.3 \times 1000=$
c. $-0.024 / 10=$
2. Convert to scientific notation.
a. 0.55×10^{5}
b. 0.0092×100
c. 940×10^{-6}
d. 0.00032×10^{1}
3. Write these numbers in scientific notation.
a. 7,700
b. $160,000,000$
c. 0.023
d. 0.00067

ANSWERS (To make answer pages easy to locate, use a sticky note.)
$\begin{array}{lllll}\text { Pretest: } & \begin{array}{llll}\text { 1a. } 9.4 \times 10^{6} & \text { 1b. } 4.2 \times 10^{4} & \text { 1c. }-6.7 \times 10^{-5} & \text { 1d. }-7.7 \times 10^{1}\end{array}\end{array}$
2a. 0.0014
2b. 194
2c. 1
Practice A: 1a. 10,000 b. 0.0001 c. $10,000,000 \quad$ d. 0.00001 . e. 1
Practice B: 1. When dividing by 1,000 , move the decimal to the left by 3 places.
$\begin{array}{lll}\text { 2a. } 0.42 \times 1000=420 & \text { 2b. } 63 / 100=0.63 \text { (must have zero in front) } & \text { c. }-74.6 / 10,000=-0.00746\end{array}$
Practice C: $\quad 1.3,000$
2. 0.00055
3. 770,000
4. -0.0095
$\begin{array}{lllllll}\text { Practice D: 1. } 5.42 \times 10^{6} & 2.6 .7 \times 10^{-7} & \text { 3. } 2.0 \times 10^{1} & 4 .-8.7 \times 10^{-2} & 5.4 .92 \times 10^{-15} & 6 . & -6.02 \times 10^{23}\end{array}$

Practice E: $1.2 b$ and $2 c$	$2 a . ~$	6.28×10^{3}	2b. 9.3×10^{-3}	2c. 7.41×10^{-1}	$2 d . ~$

$\begin{array}{llll}\text { Practice F: } & \text { 1a. } 0.0924 & \text { 1b. } 24,300 & \text { 1c. }-0.0024\end{array}$
2a. 5.5×10^{4}
2b. 9.2×10^{-1}
2c. 9.4×10^{-4}
2d. 3.2×10^{-3}
3a. 7.7×10^{3}
3b. 1.6×10^{8}
3c. 2.3×10^{-2}
3d. 6.7×10^{-4}

* * * * *

Lesson 1B: Calculations Using Exponential Notation

Pretest: If you can answer all of these three questions correctly, you may skip to Lesson 1C. Otherwise, complete Lesson 1B. Answers are at the end of this lesson.
Do not use a calculator. Convert final answers to scientific notation.

1. $\left(2.0 \times 10^{-4}\right)\left(6.0 \times 10^{23}\right)=$
2. $\frac{10^{23}}{(100)\left(3.0 \times 10^{-8}\right)}=$
3. $\left(-6.0 \times 10^{-18}\right)-\left(-2.89 \times 10^{-16}\right)=$

* * * * *

Mental Arithmetic

In chemistry, you must be able to solve simple or estimated calculations without a calculator to speed your work and as a check on your calculator answers. This mental arithmetic is simplified by using exponential notation. In this lesson, we will review the rules for doing exponential calculations "in your head."

Adding and Subtracting Exponential Notation

To add or subtract exponential notation without a calculator, the standard rules of arithmetic can be applied - if all of the numbers have the same exponential term.
Re-writing numbers to have the same exponential term usually results in values that are not in scientific notation. That's OK. During calculations, the rule is to work in exponential notation, to allow flexibility with decimal point positions, then to convert to scientific notation at the final step.
To add or subtract numbers with exponential terms, you may convert all of the exponential terms to any consistent power of 10. However, it usually simplifies the arithmetic if you convert all values to the same exponential as the largest of the exponential terms being added or subtracted.

The rule is
To add or subtract exponential notation by hand, make all of the exponents the same.
The steps are
To add or subtract exponential notation without a calculator,

1. Re-write each number so that all of the significands are multiplied by the same power of 10. Converting to the highest power of 10 being added or subtracted is suggested.
2. Write the significands and exponentials in columns: numbers under numbers (lining up the decimal points), \mathbf{x} under \mathbf{x}, exponentials under exponentials.
3. Add or subtract the significands using standard arithmetic, then attach the common power of 10 to the answer.
4. Convert the final answer to scientific notation.

Follow how the steps are applied in this
Example: $\left(40.71 \times 10^{8}\right)+\left(222 \times 10^{6}\right)=\left(40.71 \times 10^{8}\right)+\left(2.22 \times 10^{8}\right)=$

$$
\begin{array}{r}
40.71 \times 10^{8} \\
+\quad \underline{2.22 \times 10^{8}} \\
42.93 \times 10^{8}=4.293 \times 10^{9}
\end{array}
$$

Using the steps and the method shown in the example, try the following problem without a calculator. In this problem, do not round numbers during or after the calculation.
Q. $\left(32.464 \times 10^{1}\right)-\left(16.2 \times 10^{-1}\right)=$?

* * * *

A. $\left(32.464 \times 10^{1}\right)-\left(16.2 \times 10^{-1}\right)=\left(32.464 \times 10^{1}\right)-\left(0.162 \times 10^{+1}\right)=$

$$
\begin{array}{r}
32.464 \times \mathbf{1 0}^{\mathbf{1}} \\
-\frac{\left(10^{\mathbf{1}} \text { has a higher value than } 10^{-\mathbf{1}}\right)}{0.162 \times \mathbf{1 0}^{\mathbf{1}}} \\
32.302 \times \mathbf{1 0}^{\mathbf{1}}
\end{array}=3.2302 \times \mathbf{1 0}^{\mathbf{2}} \quad .
$$

Let's do problem 1 again. This time, below, convert the exponential notation to regular numbers, do the arithmetic, then convert the final answer to scientific notation.

$$
\begin{array}{r}
32.464 \times 10^{1}= \\
-16.2 \times 10^{-1}= \\
\hline
\end{array}
$$

$$
\begin{aligned}
& 32.464 \times 10^{1}= \\
&-1624.64 \\
&-16.2 \times 10^{-1}=-\underline{1.62} \\
& \mathbf{3 2 3 . 0 2}=3.2302 \times 10^{2}
\end{aligned}
$$

The answer is the same either way, as it must be. This "convert to regular numbers" method is an option when the exponents are close to 0 . However, for exponents such as 10^{23} or 10^{-17}, it is easier to use the method above that includes the exponential, but adjusts so that all of the exponentials are the same.

Practice A: Try these without a calculator. On these, don't round. Do convert final answers to scientific notation. Do the odds first, then the evens if you need more practice.

1. $\quad 64.202 \times 10^{23}$
$+\quad 13.2 \times 10^{21}$
2. $\left(61 \times 10^{-7}\right)+\left(2.25 \times 10^{-5}\right)+\left(212.0 \times 10^{-6}\right)=$
3. $\left(-54 \times 10^{-20}\right)+\left(-2.18 \times 10^{-18}\right)=$
4. $\left(-21.46 \times 10^{-17}\right)-\left(-3,250 \times 10^{-19}\right)=$

Multiplying and Dividing Powers of 10

The following boxed rules should be recited until they can be recalled from memory.

1. When you multiply exponentials, you add the exponents.

$$
\text { Examples: } 10^{3} \times 10^{2}=10^{5} \quad 10^{-5} \times 10^{-2}=10^{-7} \quad 10^{-3} \times 10^{5}=10^{2}
$$

2. When you divide exponentials, you subtract the exponents.

$$
\text { Examples: } \quad 10^{3} / 10^{2}=10^{1} \quad 10^{-5} / 10^{2}=10^{-7} \quad 10^{-5} / 10^{-2}=10^{-3}
$$

When subtracting, remember: Minus a minus is a plus. $10^{6-(-3)}=10^{6+3}=10^{9}$
3. When you take the reciprocal of an exponential, change the sign.

This rule is often remembered as:
When you take an exponential term from the bottom to the top, change its sign.
Example: $\frac{1}{10^{\mathbf{3}}}=10^{-\mathbf{3}} ; 1 / 10^{-5}=10^{5}$
Why does this work? Rule 2: $\frac{1}{10^{3}}=\frac{10^{0}}{10^{3}}=10^{0-3}=10^{-3}$
4. When fractions include several terms, it may help to simplify the top and bottom separately, then divide.

Example: $\frac{10^{-3}}{10^{5} \times 10^{-2}}=\frac{10^{-3}}{10^{\mathbf{3}}}=\mathbf{1 0}^{-6}$
Try the following problem.
Q. Without using a calculator, simplify the top, then the bottom, then divide.

$$
\frac{10^{-3} \times 10^{-4}}{10^{5} \times 10^{-8}}=
$$

Answer: $\quad \frac{10^{-3} \times 10^{-4}}{10^{5} \times 10^{-8}}=\frac{10^{-7}}{10^{-3}}=10^{-7-(-3)}=10^{-7+3}=10^{-4}$

Practice B: Write answers as 10 to a power. Do not use a calculator. Do the odds first, then the evens if you need more practice.

1. $10^{6} \times 10^{2}=$
2. $\frac{10^{-5}}{10^{-4}}=$
3. $\frac{1}{10^{-4}}=$
4. $\frac{10^{3} \times 10^{-5}}{10^{-2} \times 10^{-4}}=$
5. $\frac{100 \times 10^{-2}}{1,000 \times 10^{6}}=$
6. $10^{-5} \times 10^{-6}=$
7. $\frac{10^{-3}}{10^{5}}=$
8. $1 / 10^{23}=$
9. $\frac{10^{5} \times 10^{23}}{10^{-1} \times 10^{-6}}=$
10. $\frac{10^{-3} \times 10^{23}}{10 \times 1,000}=$

Multiplying and Dividing in Exponential Notation

These are the rules we use most often.

1. When multiplying and dividing using exponential notation, handle the significands and exponents separately.

Do number math using number rules, and exponential math using exponential rules. Then combine the two parts.

Apply rule 1 to the following three problems.
a. Do not use a calculator: $\left(2 \times 10^{3}\right)\left(4 \times 10^{23}\right)=$

For numbers, use number rules. 2 times 4 is 8
For exponentials, use exponential rules. $10^{3} \times 10^{23}=10^{3+23}=10^{26}$
Then combine the two parts: $\left(2 \times 10^{3}\right)\left(4 \times 10^{23}\right)=\mathbf{8} \times \mathbf{1 0}^{\mathbf{2 6}}$
b. Do the significand math on a calculator but try the exponential math in your head for $\left(2.4 \times 10^{-3}\right)\left(3.5 \times 10^{23}\right)=$

* * * * *

Handle significands and exponents separately.

- Use a calculator for the numbers. $2.4 \times 3.5=8.4$
- Do the exponentials in your head. $10^{-3} \times 10^{23}=10^{20}$
- Then combine.

$$
\left(2.4 \times 10^{-3}\right)\left(3.5 \times 10^{23}\right)=(2.4 \times 3.5) \times\left(10^{-3} \times 10^{23}\right)=8.4 \times 10^{\mathbf{2 0}}
$$

We will review how much to round answers in Module 3. Until then, round numbers and significands in your answers to two digits unless otherwise noted.
c. Do significand math on a calculator but exponential math without a calculator.

$$
\frac{6.5 \times 10^{23}}{4.1 \times 10^{-8}}=
$$

Answer: $\quad \frac{6.5 \times 10^{23}}{4.1 \times 10^{-8}}=\frac{6.5}{4.1} \times \frac{10^{23}}{10^{-8}}=1.585 \times\left[10^{23-(-8)}\right]=\mathbf{1 . 6} \times 10^{\mathbf{3 1}}$
2. When dividing, if an exponential term does not have a significand, add a $\mathbf{1} \mathbf{x}$ in front of the exponential so that the number-number division is clear.
Apply Rule 2 to the following problem. Do not use a calculator.

$$
\frac{10^{-14}}{2.0 \times 10^{-8}}=
$$

$$
\text { Answer: } \frac{10^{-14}}{2.0 \times 10^{-8}}=\frac{1}{2.0} \times \frac{10^{-14}}{10^{-8}}=0.50 \times 10^{-6}=5.0 \times 10^{-7}
$$

Practice C

Study the two rules above, then apply them from memory to these problems. To have room for careful work, solve these in your notebook.
Do the odds first, then the evens if you need more practice. Try these first without a calculator, then check your mental arithmetic with a calculator if needed. Write final answers in scientific notation, rounding significands to two digits.

1. $\left(2.0 \times 10^{1}\right)\left(6.0 \times 10^{23}\right)=$
2. $\left(5.0 \times 10^{-3}\right)\left(1.5 \times 10^{15}\right)=$
3. $\frac{3.0 \times 10^{-21}}{-2.0 \times 10^{3}}=$
4. $\frac{6.0 \times 10^{-23}}{2.0 \times 10^{-4}}=$
5. $\frac{10^{-14}}{-5.0 \times 10^{-3}}=$
6. $\frac{10^{14}}{4.0 \times 10^{-4}}=$
7. Complete the three problems in the pretest at the beginning of this lesson.

Study Summary

In your problem notebook, write a list of rules in Lesson 1B that were unfamiliar, need reinforcement, or you found helpful. Then condense your list. Add this new list to your numbered points from Lesson 1A. Write and recite the combined list until you can write all of the points from memory. Then do the problems below.

Practice D

Start by doing every other letter. If you get those right, go to the next number. If not, do a few more of that number. Save one part of each question for your next study session.

1. Try these without a calculator. Convert final answers to scientific notation.
a. $3 \times\left(6.0 \times 10^{23}\right)=$
b. $1 / 2 \times\left(6.0 \times 10^{23}\right)=$
c. $0.70 \times\left(6.0 \times 10^{23}\right)=$
d. $10^{3} \times\left(6.0 \times 10^{23}\right)=$
e. $10^{-2} \times\left(6.0 \times 10^{23}\right)=$
f. $\left(-0.5 \times 10^{-2}\right)\left(6.0 \times 10^{23}\right)=$
g. $\frac{1}{10^{12}}=$
h. $1 / 10^{-9}=$
i. $\frac{3.0 \times 10^{24}}{6.0 \times 10^{23}}=$
j. $\frac{2.0 \times 10^{18}}{6.0 \times 10^{23}}=$
k. $1.0 \times 10^{-14}=$ 4.0×10^{-5}
2. $\frac{10^{10}}{2.0 \times 10^{-5}}=$
3. Use a calculator for the numbers, but not for the exponents.
a. $\frac{2.46 \times 10^{19}}{6.0 \times 10^{23}}=$
b. $\frac{10-14}{0.0072}=$
4. Do not use a calculator. Write answers as a power of 10.
a. $\frac{10^{7} \times 10^{-2}}{10 \times 10^{-5}}=$
b. $\frac{10^{-23} \times 10^{-5}}{10^{-5} \times 100}=$
5. Convert to scientific notation in the final answer. Do not round during these.
a. $\left(74 \times 10^{5}\right)+\left(4.09 \times 10^{7}\right)=$
b. $\left(5.122 \times 10^{-9}\right)-\left(-12,914 \times 10^{-12}\right)=$

ANSWERS

Pretest. In scientific notation:

1. 1.2×10^{20}
2. 3.3×10^{28}
3. 2.83×10^{-16}

Practice A: You may do the arithmetic in any way you choose that results in these final answers.

1. $\quad 64.202 \times 10^{23}=64.202 \times 10^{23}$
$+\frac{13.2 \times 10^{21}}{+} \frac{0.132 \times 10^{23}}{64.334 \times 10^{23}}=6.4334 \times 10^{24}$
2. $\left(61 \times 10^{-7}\right)+\left(2.25 \times 10^{-5}\right)+\left(212.0 \times 10^{-6}\right)=\left(0.61 \times 10^{-5}\right)+\left(2.25 \times 10^{-5}\right)+\left(21.20 \times 10^{-5}\right)=$
0.61×10^{-5}
$2.25 \times 10^{-5} \quad\left(10^{-5}\right.$ is the highest value of the three exponentials)
$+\frac{21.20 \times 10^{-5}}{24.06 \times 10^{-5}}=2.406 \times 10^{-4}$
3. $\left(-54 \times 10^{-20}\right)+\left(-2.18 \times 10^{-18}\right)=\left(-0.54 \times 10^{-18}\right)+\left(-2.18 \times 10^{-18}\right)=$
$-0.54 \times 10^{-18} \quad\left(10^{-18}\right.$ is higher in value than $\left.10^{-20}\right)$
$\frac{-2.18 \times 10^{-18}}{-2.72 \times 10^{-18}}$
4. $\left(-21.46 \times 10^{-17}\right)-\left(-3,250 \times 10^{-19}\right)=$

$$
\begin{array}{r}
\left(+3,250 \times 10^{-19}\right)-\left(21.46 \times 10^{-17}\right)=\left(+32.50 \times 10^{-17}\right)-\left(21.46 \times 10^{-17}\right)= \\
-\frac{32.50 \times 10^{-17}}{11.04 \times 10^{-17}}=1.104 \times 10^{-17}
\end{array}
$$

Practice B

1. 10^{8}
2. 10^{-11}
3. 10^{-1}
4. 10^{-8}
5. 10^{4}
6. $10-23$
7. 10^{4}
8. 10^{35}
9. $\frac{100 \times 10^{-2}}{1,000 \times 10^{6}}=\frac{10^{2} \times 10^{-2}}{10^{3} \times 10^{6}}=\frac{10^{0}}{10^{9}}=10^{-9}$
10. $\frac{10^{-3} \times 10^{23}}{10 \times 1,000}=\frac{10^{20}}{10^{4}}=10^{16}$
(For 9 and 10, you may use different steps, but you must arrive at the same answer.)

Practice C

1. 1.2×10^{25}
2. 7.5×10^{12}
3. -1.5×10^{-24}
4. 3.0×10^{-19}
5. -2.0×10^{-12}
6. 2.5×10^{17}

Practice D

1a. $3 \times\left(6.0 \times 10^{23}\right)=18 \times 10^{23}=1.8 \times 10^{24}$
1b. $1 / 2 \times\left(6.0 \times 10^{23}\right)=3.0 \times 10^{23}$
1c. $0.70 \times\left(6.0 \times 10^{23}\right)=4.2 \times 10^{23}$
1d. $10^{3} \times\left(6.0 \times 10^{23}\right)=6.0 \times 10^{26}$
1e. $\quad 10^{-2} \times\left(6.0 \times 10^{23}\right)=6.0 \times 10^{21}$
1f. $\left(-0.5 \times 10^{-2}\right)\left(6.0 \times 10^{23}\right)=-3.0 \times 10^{21}$
1g. $\frac{1}{10^{12}}=10^{-12}$
1h. $1 / 10^{-9}=10^{9}$

1i. $\frac{3.0 \times 10^{24}}{6.0 \times 10^{23}}=\frac{3.0}{6.0} \times \frac{10^{24}}{10^{23}}=0.50 \times 10^{1}=5.0 \times 10^{0}(=5.0)$
1j. $\frac{2.0 \times 10^{18}}{6.0 \times 10^{23}}=0.33 \times 10^{-5}=3.3 \times 10^{-6}$
1k. $\frac{1.0 \times 10^{-14}}{4.0 \times 10^{-5}}=0.25 \times 10^{-9}=2.5 \times 10^{-10}$
11. $\frac{10^{10}}{2.0 \times 10^{-5}}=\frac{1}{2.0} \times \frac{10^{10}}{10^{-5}}=0.50 \times 10^{15}=5.0 \times 10^{14}$

2a. $\frac{2.46 \times 10^{19}}{6.0 \times 10^{23}}=0.41 \times 10^{-4}=4.1 \times 10^{-5}$
2b. $\frac{10^{-14}}{0.0072}=\frac{1.0 \times 10^{-14}}{7.2 \times 10^{-3}}=\frac{1.0}{7.2} \times \frac{10^{-14}}{10^{-3}}=0.14 \times 10^{-11}=1.4 \times 10^{-12}$

3a. $\frac{10^{7} \times 10^{-2}}{10^{1} \times 10^{-5}}=\frac{10^{5}}{10^{-4}}=10^{9}$
4a. $\left(74 \times 10^{5}\right)+\left(4.09 \times 10^{7}\right)=$

$$
=\left(0.74 \times 10^{7}\right)+\left(4.09 \times 10^{7}\right)=
$$

$$
0.74 \times 10^{7}
$$

$$
+\frac{4.09 \times 10^{7}}{4.83 \times 10^{7}}
$$

3b. $\frac{10^{-23} \times 10^{-5}}{10^{-5} \times 10^{2}}=10^{-25}$
4b. $\left(5.122 \times 10^{-9}\right)-\left(-12,914 \times 10^{-12}\right)=$

$$
=\left(5.122 \times 10^{-9}\right)+\left(12.914 \times 10^{-9}\right)=
$$

$$
5.122 \times 10^{-9}
$$

$+\frac{12.914 \times 10^{-9}}{18.036 \times 10^{-9}}=1.8036 \times 10^{-8}$

Lesson 1C: Tips for Exponential Calculations

Pretest: If you can solve both problems correctly, skip this lesson. Convert your final answers to scientific notation. Check your answers at the end of this lesson.

1. Solve this problem without a calculator.
$\frac{\left(10^{-9}\right)\left(10^{15}\right)}{\left(4 \times 10^{-4}\right)\left(2 \times 10^{-2}\right)}=$
2. For this problem, use a calculator as needed. $\left(2.6 \times 10^{-2}\right)\left(5.5 \times 10^{-5}\right)$

Choosing a Calculator

If you have not already done so, please read Choosing a Calculator under Notes to the Student in the preface to these lessons.

Complex Calculations

The prior lessons covered the fundamental rules for exponential notation. For longer calculations, the rules are the same. The challenges are keeping track of the numbers and using the calculator correctly. The steps below will help you to simplify complex calculations, minimize data-entry mistakes, and quickly check your answers.
Let's try the following calculation two ways.

$$
\frac{\left(7.4 \times 10^{-2}\right)\left(6.02 \times 10^{23}\right)}{\left(2.6 \times 10^{3}\right)\left(5.5 \times 10^{-5}\right)}=
$$

Method 1. Do numbers and exponents separately.

Work the calculation above using the following steps.
a. Do the numbers on the calculator. Ignoring the exponentials, use the calculator to multiply all of the significands on top. Write the result. Then multiply all the significands on the bottom and write the result. Divide, write your answer rounded to two digits, and then check below.

* * * * * (See How To Use These Lessons, Point 1, on page 1).

$$
\frac{7.4 \times 6.02}{2.6 \times 5.5}=\frac{44.55}{14.3}=3.1
$$

b. Then exponents. Starting from the original problem, look only at the powers of 10 . Try to solve the exponential math "in your head" without the calculator. Write the answer for the top, then the bottom, then divide.

* * * * *

$$
\frac{10^{-2} \times 10^{23}}{10^{3} \times 10^{-5}}=\frac{10^{21}}{10^{-2}}=10^{21-(-2)}=10^{23}
$$

c. Now combine the significand and exponential and write the final answer.

3.1×10^{23}

Note that by grouping the numbers and exponents separately, you did not need to enter the exponents into your calculator. To multiply and divide powers of 10, you simply add and subtract whole numbers.
Let's try the calculation a second way.

Method 2. All on the calculator.

Enter all of the numbers and exponents into your calculator. (Your calculator manual, which is usually available online, can help.) Write your final answer in scientific notation. Round the significand to two digits.

* * * * *

On most calculators, you will need to use an E or EE or EXP or ${ }^{\wedge}$ key, rather than the times key, to enter a " 10 to a power" term.
If you needed that hint, try again, and then check below.

Note how your calculator displays the exponential term in answers. The exponent may be set apart at the right, sometimes with an \mathbf{E} in front.
Your calculator answer, rounded, should be the same as with Method 1: 3.1×10^{23}.
Which way was easier? "Numbers, then exponents," or "all on the calculator?" How you do the arithmetic is up to you, but "numbers, then exponents" is often quicker and easier.

Checking Calculator Results

Whenever a complex calculation is done on a calculator, you must do the calculation a second time, using different steps, to catch errors in calculator use. Calculator results can be checked either by using a different key sequence or by estimating answers.
"Mental arithmetic estimation" is often the fastest way to check a calculator answer. To learn this method, let's use the calculation that was done in the first section of this lesson.

$$
\frac{\left(7.4 \times 10^{-2}\right)\left(6.02 \times 10^{23}\right)}{\left(2.6 \times 10^{3}\right)\left(5.5 \times 10^{-5}\right)}=
$$

Apply the following steps to the problem above.

1. Estimate the numbers first. Ignoring the exponentials, round and then multiply all of the top significands, and write the result. Round and multiply the bottom significands. Write the result. Then write a rounded estimate of the answer when you divide those two numbers, and then check below.

Your rounding might be

$$
\frac{7 \times 6}{3 \times 6}=\frac{7}{3} \approx 2 \quad \text { (the } \approx \text { sign means approximately equals) }
$$

If your mental arithmetic is good, you can estimate the number math on the paper without a calculator. The estimate needs to be fast, but does not need to be exact. If
needed, evaluate the rounded top and bottom numbers on the calculator, but try to practice the arithmetic "in your head."
2. Simplify the exponents. The exponents can be solved by adding and subtracting whole numbers. Try the exponential math without the calculator.

* * * * *

$$
\frac{10^{-2} \times 10^{23}}{10^{3} \times 10^{-5}}=\frac{10^{21}}{10^{-2}}=10^{21-(-2)}=\mathbf{1 0}^{\mathbf{2 3}}
$$

3. Combine the estimated number and exponential answers. Compare this estimated answer to answer found when you did this calculation in the section above using a calculator. Are they close?

The estimate is 2×10^{23}. The answer with the calculator was 3.1×10^{23}. Allowing for rounding, the two results are close.
If your fast, rounded, "done in your head" answer is close to the calculator answer, it is likely that the calculator answer is correct. If the two answers are far apart, check your work.

Estimating Number Division

If you know your multiplication tables, and if you memorize these simple decimal equivalents to help in estimating division, you may be able to do many numeric estimates without a calculator.

$$
1 / 2=0.50 \quad 1 / 3=0.33 \quad 1 / 4=0.25 \quad 1 / 5=0.20 \quad 2 / 3=0.67 \quad 3 / 4=0.75 \quad 1 / 8=0.125
$$

The method used to get your final answer should be slow and careful. Your checking method should use different steps or calculator keys, or, if time is a factor, should use rounded numbers and quick mental arithmetic.
On timed tests, you may want to do the exact calculation first, and then go back at the end, if time is available, and use rounded numbers as a check. When doing a calculation the second time, try not to look back at the first answer until after you write the estimate. If you look back, by the power of suggestion, you will often arrive the first answer whether it is correct or not.

For complex operations on a calculator, work each calculation a second time using rounded numbers and/or different steps or keys.

Practice

For problems 1-4, you will need to know the "fraction to decimal equivalent" conversions in the box above. If you need practice, try this.

- On a sheet of paper, draw 5 columns and 7 rows. List the fractions down the middle column.
- Write the decimal equivalents of the fractions at the far right.

		$1 / 2$		
		$1 / 3$		
		$1 / 4$		
		\ldots		

- Fold over those answers and repeat at the far left. Fold over those and repeat.

To start, complete the even numbered problems. If you get those right, go to the next lesson. If you need more practice, do the odds.

Then try these next four without a calculator. Convert final answer to scientific notation.
1.

$$
\frac{4 \times 10^{3}}{(2.00)\left(3.0 \times 10^{7}\right)}=
$$

2.

3. $\frac{\left(3 \times 10^{-3}\right)\left(8.0 \times 10^{-5}\right)}{\left(6.0 \times 10^{11}\right)\left(2.0 \times 10^{-3}\right)}=$ $\left(6.0 \times 10^{11}\right)\left(2.0 \times 10^{-3}\right)$
4. $\frac{\left(3 \times 10^{-3}\right)\left(3.0 \times 10^{-2}\right)}{\left(9.0 \times 10^{-6}\right)(2.0 \times 101)}=$ $\left(9.0 \times 10^{-6}\right)\left(2.0 \times 10^{1}\right)$
For problems 5-8 below, in your notebook

- First write an estimate based on rounded numbers, then exponentials. Try to do this estimate without using a calculator.
- Then calculate a more precise answer. You may
o plug the entire calculation into the calculator, or
o use the "numbers on calculator, exponents on paper" method, or
o experiment with both approaches to see which is best for you.
Convert both the estimate and the final answer to scientific notation. Round the significand in the answer to two digits. Use the calculator that you will be allowed to use on quizzes and tests.

5. $\frac{\left(3.62 \times 10^{4}\right)\left(6.3 \times 10^{-10}\right)}{\left(4.2 \times 10^{-4}\right)\left(9.8 \times 10^{-5}\right)}=$ $\left(4.2 \times 10^{-4}\right)\left(9.8 \times 10^{-5}\right)$
6. $\left(1.6 \times 10^{-3}\right)\left(4.49 \times 10^{-5}\right)=$ $\left(2.1 \times 10^{3}\right)\left(8.2 \times 10^{6}\right)$
7. $\frac{10^{-2}}{(750)\left(2.8 \times 10^{-15}\right)}=$
8. $\frac{1}{\left(4.9 \times 10^{-2}\right)\left(7.2 \times 10^{-5}\right)}=$
9. For additional practice, do the two pretest problems at the beginning of this lesson.

ANSWERS

Pretest: 1. $1.25 \times 10^{11} \quad$ 2. 8.8×10^{-15}
Practice: You may do the arithmetic using different steps than below, but you must get the same answer.

1. $\frac{4 \times 10^{3}}{(2.00)\left(3.0 \times 10^{7}\right)}=\frac{4}{6} \times 10^{3-7}=\frac{2}{3} \times 10^{-4}=0.67 \times 10^{-4}=6.7 \times 10^{-5}$
2. $\frac{1}{\left(4.0 \times 10^{9}\right)\left(2.0 \times 10^{3}\right)}=\frac{1}{8 \times 10^{12}}=\frac{1}{8} \times 10^{-12}=0.125 \times 10^{-12}=1.25 \times 10^{-13}$
3. $\frac{\left(3 \times 10^{-3}\right)\left(8.0 \times 10^{-5}\right)}{\left(2^{6.0} \times 10^{11}\right)\left(2.0 \times 10^{-3}\right)}=\frac{8}{4} \times \frac{10^{-3-5}}{10^{11-3}}=2 \times \frac{10^{-8}}{10^{8}}=2 \times 10^{-8-8}=2.0 \times 10^{-16}$
4. $\frac{\left(3 \times 10^{-3}\right)\left(3.0 \times 10^{-2}\right)}{\left(9.0 \times 10^{-6}\right)\left(2.0 \times 10^{1}\right)}=\frac{9}{18} \times \frac{10^{-3-2}}{10^{-6+1}}=0.50 \times \frac{10^{-5}}{10^{-5}}=0.50=5.0 \times 10^{-1}$
5. First the estimate. The rounding for the numbers might be
$\frac{4 \times 6}{-4 \times 10}=0.6$ For the exponents: $\frac{10^{4} \times 10^{-10}}{10^{-4} \times 10^{-5}}=\frac{10^{-6}}{10^{-9}}=10^{9} \times 10^{-6}=10^{3}$

$$
\approx 0.6 \times 10^{3} \approx 6 \times 10^{2} \text { (estimate) in scientific notation. }
$$

For the precise answer, doing numbers and exponents separately,
$\left(3.62 \times 10^{4}\right)\left(6.3 \times 10^{-10}\right)=3.62 \times 6.3=0.55$ The exponents are done as in the estimate above. $\left(4.2 \times 10^{-4}\right)\left(9.8 \times 10^{-5}\right) \quad 4.2 \times 9.8$

$$
=0.55 \times 10^{3}=5.5 \times 10^{2} \text { (final) in scientific notation. }
$$

This is close to the estimate, a check that the more precise answer is correct.
6. Estimate: $\frac{1}{7 \times 3} \approx \frac{1}{20}=0.05$; $\frac{10^{-2}}{\left(10^{2}\right)\left(10^{-15}\right)}=10^{-2-(-13)}=10^{11}$ $0.05 \times 10^{11}=5 \times 10^{9}$ (estimate)
Numbers on calculator: $\frac{1}{7.5 \times 2.8}=0.048$ Exponents - same as in estimate.
FINAL: $0.048 \times 10^{11}=4.8 \times 10^{9}$ (close to the estimate)
7. You might estimate, for the numbers first,

$$
\begin{aligned}
& \frac{1.6 \times 4.49}{2.1 \times 8.2}=\frac{2 \times 4}{2 \times 8}=0.5 \quad \text { For the exponents: } \frac{10^{-3} \times 10^{-5}}{10^{3} \times 10^{6}}=\frac{10^{-8}}{10^{9}}=10^{-17} \\
& \quad=0.5 \times 10^{-17}=5 \times 10^{-18} \text { (estimate) }
\end{aligned}
$$

More precisely, using numbers then exponents, with numbers on the calculator,
$\frac{1.6 \times 4.49}{}=0.42$ The exponents are done as in the estimate above. 2.1×8.2
$0.42 \times 10^{-17}=4.2 \times 10^{-18} \quad$ This is close to the estimate. Check!
8. Estimate: $\frac{1}{5 \times 7} \approx \frac{1}{35} \approx 0.03 ; \quad \frac{1}{\left(10^{-2}\right)\left(10^{-5}\right)}=1 /\left(10^{-7}\right)=10^{7}$ $0.03 \times 10^{7} \approx 3 \times 10^{5}$ (estimate)

Numbers on calculator $=\frac{1}{4.9 \times 7.2}=0.028$ Exponents - see estimate.
FINAL: $0.028 \times 10^{7}=2.8 \times 10^{5}$ (close to the estimate)

Lesson 1D: Special Project - The Atoms (Part 1)

At the center of chemistry are atoms: the building blocks of matter. There are 91 different kinds of atoms found in the earth's crust. When a substance is stable at room temperature and pressure and contains only one kind of atom, the substance is said to be an element, and the atoms are in their elemental form.

The Periodic Table helps in predicting the properties of the elements and atoms. In firstyear chemistry, about 40 of the atoms are frequently encountered. Quick, automatic conversion between of the names and symbols of those atoms "in your head" will speed and simplify solving problems.

To begin to learn those atoms, your assignment is:

- For the $\mathbf{1 2}$ atoms below, memorize the name, and symbol, and the position of the atom in the table.
- For each atom, given either its symbol or name, be able to write the other.
- Be able to fill in an empty chart like the one below with these atom names and symbols.

Periodic Table

SUMMARY - Scientific Notation

1. When writing a number between -1 and 1 , place a zero in front of the decimal point. Do not write .42 or -.74 ; do write 0.42 or -0.74
2. Exponential notation represents numeric values in three parts:

- a sign in front showing whether the value is positive or negative;
- a number (the significand);
- times a base taken to a power (the exponential term).

3. In scientific notation, the significand must be a number that is 1 or greater, but less than 10 , and the exponential term must be 10 to a whole-number power. This places the decimal point in the significand after the first number which is not a zero.
4. When moving a decimal in exponential notation, the sign in front never changes.
5. To keep the same numeric value when moving the decimal of a number in base 10 exponential notation, if you

- move the decimal Y times to make the significand larger, make the exponent smaller by a count of Y;
- move the decimal Y times to make the significand smaller, make the exponent larger by a count of Y .
Recite and repeat to remember: When moving the decimal, for the numbers after the sign in front,
"If one gets smaller, the other gets larger. If one gets larger, the other gets smaller."

6. To add or subtract exponential notation by hand, all of the values must be converted to have the same exponential term.

- Convert all of the values to have the same power of 10 .
- List the significands and exponential in columns.
- Add or subtract the significands.
- Attach the common exponential term to the answer.

7. In multiplication and division using scientific or exponential notation, handle numbers and exponential terms separately. Recite and repeat to remember:

- Do numbers by number rules and exponents by exponential rules.
- When you multiply exponentials, you add the exponents.
- When you divide exponentials, you subtract the exponents.
- When you take an exponential term to a power, you multiply the exponents.
- To take the reciprocal of an exponential, change the sign of the exponent.

8. In calculations using exponential notation, try the significands on the calculator but the exponents on paper.
9. For complex operations on a calculator, do each calculation a second time using rounded numbers and/or different steps or keys.
\# \# \# \#

Module 2 - The Metric System

Lesson 2A: Metric Fundamentals

Have you previously mastered the metric system? If you get a perfect score on the following pretest, you may skip to Lesson 2B. If not, complete Lesson 2A.

Pretest: Write answers to these, then check your answers at the end of Lesson 2A.

1. What is the mass, in kilograms, of 150 cc's of liquid water?
2. How many cm^{3} are in a liter?

How many dm^{3} are in a liter?
3. 2.5 pascals is how many millipascals?
4. 3,500 centigrams is how many kilograms?

The Importance of Units

The fastest and most effective way to solve problems in chemistry is to focus on the units that measure quantities. In science, measurements and calculations are done using the metric system.
All measurement systems begin with standards defining fundamental quantities that include distance, mass, and time.

Distance

The metric distance unit is the meter, abbreviated \mathbf{m}. One meter is about 39.3 inches, slightly longer than one yard. A meter stick is usually numbered in centimeters.
$|||||||||\mathbf{1 0}||||||||| \mathbf{2 0}|||||||||\mathbf{3 0}||||||||| \mathbf{4 0}||||||||\mathbf{5 0}|||||||||\mathbf{6 0}||||||||\mathbf{7 0}|||||||||\mathbf{8 0}|||||||||\mathbf{9 0}||||||| \mid$

Just as a dollar can be divided into 100 cents, and a century is 100 years, a meter is divided into 100 centimeters. The centimeter, abbreviated cm, is $1 / 100^{\text {th }}$ of a meter. As equalities, we can write
$\mathbf{1}$ centimeter $\equiv 1 / 100$ th of a meter $\equiv 10^{-\mathbf{2}}$ meters and 1 meter $\equiv \mathbf{1 0 0}$ centimeters The symbol \equiv means "is defined as equal to" and/or "is exactly equal to."
A centimeter can be divided into 10 millimeters ($\mathbf{m m}$). Each millimeter is $1 / 1000^{\text {th }}$ of a meter. In relation to the meter,

1 millimeter $\equiv 1 / 1,000$ th of a meter $\equiv 10^{-\mathbf{3}}$ meters and 1 meter $\equiv \mathbf{1}, \mathbf{0 0 0}$ millimeters
A meter stick can also be divided into 10 decimeters (dm). As equalities,
1 decimeter $\equiv 1 / 10$ th of a meter $\equiv 10^{-\mathbf{1}}$ meters and $\mathbf{1}$ meter $\equiv \mathbf{1 0}$ decimeters
One decimeter is also equal to 10 centimeters.
Long distances are usually measured in kilometers (km). $\mathbf{1}$ kilometer $\equiv \mathbf{1 , 0 0 0}$ meters

What do you need to remember from the above? You will need to be able to write from memory the following two rules.

1. The "meter-stick" equalities

1 METER $\equiv 10$ deciMETERS $\equiv 100$ centiMETERS $\equiv 1,000$ milliMETERS
and 1,000 METER sticks $\equiv 1$ kiloMETER
2. The "one prefix" definitions

1 milliMETER $\equiv 1 \mathrm{~mm} \equiv 10^{-3}$ METERS ($\equiv 1 / 1000^{\text {th }}$ METER $\equiv 0.001$ METERS $)$
1 centiMETER $\equiv 1 \mathrm{~cm} \equiv 10^{-2}$ METERS ($\equiv 1 / 100^{\text {th }}$ METER $\equiv 0.01$ METERS)
1 deciMETER $\equiv 1 \mathrm{dm} \equiv 10^{\boldsymbol{- 1}}$ METERS ($\equiv 1 / 10^{\text {th }}$ METER $\equiv 0.1$ METERS $)$
1 kiloMETER $\equiv 1 \mathrm{~km} \equiv 10^{3}$ METERS ($\equiv 1,000$ METERS)
To help in remembering the meter-stick equalities, visualize a meter stick. Recall what the numbers and marks on a meter stick mean. Use that image to help you to write the equalities above.

To help in remember the kilometer definition, visualize 1,000 meter sticks in a row. That's a distance of one kilometer. 1 kilometer $\equiv 1,000$ meter sticks.

Once you commit Rule 1 to memory, Rule 2 using the " 1 -prefix" definition format should be easy to write because it is mathematically equivalent.

For example: To complete 1 centiMETER =
Write 1 METER = 100 centiMETERS
Then to get $\mathbf{1}$ centimeter, divide both sides by 100:

$$
1 / 100 \text { METER }=10^{-2} \text { METER }=1 \text { centiMETER }
$$

Rules 1 and 2 are especially important because of Rule
3. You may substitute any unit for METER in the equalities above.

Rule 3 means that the prefix relationships that are true for meters are true for any units of measure. The three rules above allow us to write a wide range of equalities that we can use to solve science calculations, such as

1 liter $\equiv 1,000$ milliliters 1 centigram $\equiv 10^{\mathbf{- 2}}$ grams $\quad 1$ kilocalorie $\equiv 10^{\mathbf{3}}$ calories
To use kilo- , deci-, centi- or milli- with any units, you simply need to be able to write or recall from memory the metric equalities in Rules 1 and 2 above.

Practice A: Write Rules 1 and 2 until you can do so from memory. Learn Rule 3. Then complete these problems without looking back at the rules.

1. From memory, add exponential terms to these blanks.
a. 1 millimeter $=$ \qquad meters
b. 1 deciliter $=$ \qquad liter
2. From memory, add full metric prefixes to these blanks.
a. 1000 grams $=1$ \qquad gram
b. 10^{-2} liters $=1$ \qquad liter

Volume

Volume is the amount of three-dimensional space that a material or shape occupies. Volume is termed a derived quantity, rather than a fundamental quantity, because it is derived from distance. Any volume unit can be converted to a distance unit cubed.

A cube that is 1 centimeter wide by 1 cm high by 1 cm long has a volume of one cubic centimeter $\left(1 \mathrm{~cm}^{3}\right)$. In biology and medicine, cm^{3} is often abbreviated as "cc."
In chemistry, cubic centimeters are usually referred to as milliliters, abbreviated as mL. One milliliter is defined as exactly one cubic centimeter. Based on this definition, since

- 1,000 milliMETERs $\equiv 1$ METER, and 1,000 millianythings $\equiv 1$ anything,
- 1,000 milliLITERS is defined as 1 liter ($\mathbf{1} \mathbf{L}$).

The mL is a convenient measure for smaller volumes, while the liter (about 1.1 quarts) is preferred when measuring larger volumes.
One liter is the same as one cubic decimeter $\left(1 \mathrm{dm}^{3}\right)$. Note how these units are related.

- The volume of a cube that is $10 \mathrm{~cm} \times 10 \mathrm{~cm} \times 10 \mathrm{~cm}=1,000 \mathrm{~cm}^{3}=1,000 \mathrm{~mL}$
- Since $10 \mathrm{~cm} \equiv 1 \mathrm{dm}$, the volume of this same cube can be calculated as
$1 \mathrm{dm} \times 1 \mathrm{dm} \times 1 \mathrm{dm} \equiv 1$ cubic decimeter $\equiv 1 \mathrm{dm}^{3}$
Based on the above, by definition, all of the following terms are equal.

$$
1,000 \mathrm{~cm}^{3} \equiv 1,000 \mathrm{~mL} \equiv 1 \mathrm{~L} \equiv 1 \mathrm{dm}^{3}
$$

What do you need to remember about volume? For now, just two more sets of equalities.
4. 1 milliliter $(\mathrm{mL}) \equiv 1 \mathrm{~cm}^{3} \equiv 1 \mathrm{cc}$
5. 1 liter $\equiv 1,000 \mathrm{~mL} \equiv 1,000 \mathrm{~cm}^{3} \equiv 1 \mathrm{dm}^{3}$

Mass

Mass measures the amount of matter in an object. If you have studied physics, you know that mass and weight are not the same. In chemistry, however, unless stated otherwise, we assume that mass is measured at the constant gravity of the earth's surface. In that case, mass and weight are directly proportional and can be measured with the same instruments.

The metric base-unit for mass is the gram. One gram (g) was originally defined as the mass of one cubic centimeter of liquid water at 4° Celsius, the temperature at which water has its highest density. The modern SI definition for one gram is a bit more complicated, but it is still very close to the historic definition. We will often use that historic definition in calculations involving liquid water if high precision is not required.

For a given mass of liquid water at $4^{\circ} \mathrm{C}$, its volume increases by a small amount with changes in temperature. The volume increases more if the water freezes or boils. However, for most calculations for liquid water at any temperature, the following rule may be used.
6. $1 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}$ (liquid) $\equiv 1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{(\mathbf{l})} \approx 1.00$ gram $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad(\approx$ means approximately $)$

Temperature

Metric temperature scales are defined by the properties of water. The unit of the temperature scale is termed a degree Celsius (${ }^{\circ} \mathrm{C}$).
$0^{\circ} \mathrm{C}=$ the freezing point of water.
$10 \mathbf{0}^{\circ} \mathrm{C}=$ the boiling point of water at a pressure of one atmosphere.
Room temperature is generally between $20^{\circ} \mathrm{C}$ (which is $68^{\circ} \mathrm{F}$) and $25^{\circ} \mathrm{C}\left(77^{\circ} \mathrm{F}\right)$.
Time: The base unit for time in the metric system is the second.

Unit and Prefix Abbreviations

The following list of abbreviations for metric units should also be committed to memory. Given the unit, you need to be able to write the abbreviation, and given the abbreviation, you need to be able to write the unit.
Unlike other abbreviations, abbreviations for metric units do not have periods at the end.
Units:

$$
\begin{aligned}
& \mathbf{m}=\text { meter } \quad \mathbf{g}=\text { gram } \quad \mathbf{s}=\text { second } \\
& \mathbf{L}=\text { liter }=\mathbf{d m}^{3}=\text { cubic decimeter } \quad \mathbf{c m}^{\mathbf{3}}=\text { cubic centimeter }=\mathbf{m L}=" \mathrm{cc} "
\end{aligned}
$$

The most frequently used prefixes: k - $=$ kilo- $\quad \mathrm{d}-=\operatorname{deci} \quad \mathrm{c}-=$ centi- $\quad \mathrm{m}-=$ milli-

Practice B: Write Rules 3 to 6 until you can do so from memory. Learn the unit and prefix abbreviations as well. Then complete the following problems without looking back at the above.

1. Fill in the prefix abbreviations: $1 \mathrm{~m}=10$ \qquad $\mathrm{m}=100$ \qquad $\mathrm{m}=1000$ \qquad m
2. From memory, add metric prefix abbreviations to these blanks.
a. $10^{3} \mathrm{~g}=1$ \qquad b. $10^{-3} \mathrm{~s}=1$ \qquad _s
3. From memory, add fixed decimal numbers to these blanks.
a. $1000 \mathrm{~cm}^{3}=$ \qquad mL
b. $100 \mathrm{cc}_{2} \mathrm{O}_{(\mathrm{l})}=$ \qquad grams $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
4. Add fixed decimal numbers: 1 liter \equiv \qquad $\mathrm{mL} \equiv$ \qquad $\mathrm{cm}^{3} \equiv$ \qquad dm^{3}

SI Units

The modern metric system (Le Système International d'Unités) is referred to as the SI system and is based on what are termed the SI units. SI units are a subset of metric units that chooses one preferred metric unit as the standard for measuring each physical quantity.

The SI standard unit for distance is the meter, for mass is the kilogram, and for time is the second. Historically, the SI system is derived from what in physics was termed the mks system because it measured in units of meters, kilograms, and seconds.
In physics, and in many chemistry calculations that are based on relationships derived from physics, using SI units is essential to simplify calculations.

However, for dealing with laboratory-scale quantities, chemistry often measures and calculates in units that not SI, but are metric. For example, in chemistry we generally measure mass in grams instead of kilograms. In Modules 4 and 5 , you will learn to convert between SI and non-SI units.

Learning the Metric Fundamentals

A strategy that can help in problem-solving is to start each homework assignment, quiz, or test by writing recently memorized rules at the top of your paper. By writing the rules at the beginning, you avoid having to remember them under time pressure later in the test.

We will use equalities to solve most problems. The 7 metric basics define the equalities that we will use most often.

A Note on Memorization

A goal of these lessons is to minimize what you must memorize. However, it is not possible to eliminate memorization from science courses. When there are facts which you must memorize in order to solve problems, these lessons will tell you. This is one of those times.

Memorize the table of metric basics in the box at the right. You will need to write them automatically, from memory, as part of most assignments in chemistry.

Metric Basics

1. 1 METER $\equiv 10$ deciMETERS三 100 centiMETERS
三 1000 milliMETERS
1,000 METERS $\equiv 1$ kiloMETER
2. $\mathbf{1}$ milliMETER $\equiv \mathbf{1} \mathbf{~ m m} \equiv 10^{-\mathbf{3}}$ METER

1 centiMETER $\equiv \mathbf{1 ~ c m ~} \equiv 10^{-2}$ METER
1 deciMETER $\equiv \mathbf{1 d m} \equiv 10^{-1}$ METER $\mathbf{1}$ kiloMETER $\equiv \mathbf{1} \mathbf{~ k m} \equiv 10^{\mathbf{3}}$ METER
3. Any word can be substituted for METER above.
4. $1 \mathrm{~mL} \equiv 1 \mathrm{~cm}^{3} \equiv 1 \mathrm{cc}$
5. 1 liter $\equiv 1000 \mathrm{~mL} \equiv 1000 \mathrm{~cm}^{3} \equiv 1 \mathrm{dm}^{3}$
6. $1 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}_{\text {(liquid) }} \equiv 1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
≈ 1.00 gram $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
7. meter $\equiv \mathrm{m} ;$ gram $\equiv \mathrm{g}$; second $\equiv \mathrm{s}$

Memorization Tips

When you memorize, it helps to use as many senses as you can.

- Say the rules out loud, over and over, as you would learn lines for a play.
- Write the equations several times, in the same way and order each time.
- Organize the rules into patterns, rhymes, or mnemonics.
- Number the rules so you know which rule you forgot, and when to stop.
- Picture real objects.
o Sketch a meter stick, then write the first two metric rules and compare to your sketch.
o Write METER in ALL CAPS for the first two rules as a reminder that you that you can substitute ANYTHING for METER.
o For volume, mentally picture a $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~cm}=1 \mathrm{~cm}^{3}$ cube. Call it one mL. Fill it with water to make a mass of 1.00 grams .

$$
\text { - } 1 \mathrm{~cm}-1
$$

After repetition, you will recall new rules automatically. That's the goal.

Practice C: Study the 7 rules in the metric basics table above, then write the table on paper from memory. Repeat until you can write all parts of the table from memory, 100%. Then cement your knowledge by doing these problems. Check your answers below.

1. In your mind, picture a kilometer and a millimeter. Which is larger?
2. Which is larger, a kilojoule or a millijoule?
3. Name four units that can be used to measure volume in the metric system.
4. How many centimeters are on a meter stick?
5. How large is a kiloliter?
6. What is the mass of 15 milliliters of liquid water?
7. One liter of liquid water has what mass?
8. What is the volume of one gram of ice?
9. Fill in the portion of the Periodic Table below for the first 12 atoms.

ANSWERS

Pretest: $1.0 .15 \mathrm{~kg} \quad$ 2. $1,000 \mathrm{~cm}^{3}, 1 \mathrm{dm}^{3} \quad$ 3. 2,500 millipascals \quad 4. 0.035 kg

Practice A

1a. 1 millimeter $=10^{-3}$ meters
1b. 1 deciliter $=10^{-1}$ liter
2a. 1000 grams $=1$ kilogram
2b. 10^{-2} liters $=1$ centiliter

Practice B

1. $1 \mathrm{~m}=10 \mathrm{dm}=100 \mathrm{~cm}=1000 \mathrm{~mm}$

2a. $\quad 10^{3} \mathrm{~g}=1 \mathrm{~kg}$
2b. $10^{-3} \mathrm{~s}=1 \mathrm{~ms}$
3a. $\quad 1000 \mathrm{~cm}^{3}=1000 \mathrm{~mL}$
3b. $100 \mathrm{cc} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=100$ grams $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
4. 1 liter $\equiv 1000 \mathrm{~mL} \equiv 1000 \mathrm{~cm}^{3} \equiv 1 \mathrm{dm}^{3}$

Practice C

1. A kilometer 2. A kilojoule
2. Possible answers include cubic centimeters, milliliters, liters, cubic decimeters, cubic meters, and any metric distance unit cubed.
3. 100
4. 1,000 liters
5. 15 grams
6. 1,000 grams or one kilogram
7. These lessons have not supplied the answer. Water expands when it freezes. So far, we only know the answer for liquid water.
8. See Periodic Table.

Lesson 2B: Metric Prefixes

Pretest: If you have previously mastered use of the prefixes in the table below, try the Practice B problems at the end of this lesson. If you get those right, you may skip this lesson.

Additional Prefixes

For measurements of very large or very small quantities, prefixes larger than kilo- and smaller than milli- may be used. The 13 prefixes encountered most frequently are listed in the table at the right. Note that

- Outside the range between -3 and 3, metric prefixes are abbreviations of powers of 10 that are divisible by 3 .
- When the full prefix name is written, the first letter is not normally capitalized.
- For prefixes above \boldsymbol{k} - (kilo-), the abbreviation for a prefix must be capitalized.
- For the prefixes k - and below, all letters of the abbreviation must be lower case.

Using Prefixes

A metric prefix is interchangeable with the

Prefix	Abbreviation	Means
tera-	T-	$\times 10^{12}$
giga-	G-	$\times 10^{9}$
mega-	M-	$\times 10^{6}$
kilo-	k-	$\times 10^{3}$
hecto-	h-	$\times 10^{2}$
deka-	da-	$\times 10^{1}$
deci-	d-	$\times 10^{-1}$
centi-	c-	$\times 10^{-2}$
milli-	$\mathrm{m}-$	$\times 10^{-3}$
micro-	$\mathrm{p}-(\mathrm{mu})$ or $\mathrm{u}-$	$\times 10^{-6}$
nano-	$\mathrm{n}-$	$\times 10^{-9}$
pico-	$\mathrm{p}-$	$\times 10^{-12}$
femto-	$\mathrm{f}-$	$\times 10^{-15}$

- An exponential term can be substituted for its equivalent metric prefix.

Examples: $\quad 7.0$ milliliters $=7.0 \times \mathbf{1 0}^{\mathbf{- 3}}$ liters
$5.6 \mathrm{~kg}=5.6 \times 10^{\mathbf{3}} \mathrm{g}$
43 nanometers $=43 \mathrm{~nm}=43 \times 10^{-9} \mathrm{~m}$

- A metric prefix can be substituted for its equivalent exponential term.

Examples: $3.5 \times 10^{\mathbf{- 1 2}}$ meters $=3.5$ picometers $=3.5 \mathrm{pm}$
7.2×10^{6} watts $=7.2$ megawatts

In calculations, we will often need to convert between a prefix and its equivalent exponential term. One way to do this is to apply the prefix definitions.

Q1. From memory, fill in these blanks with prefixes.
a. 10^{3} grams $=1$ \qquad gram
b. 2×10^{-3} meters $=2$ \qquad meters

Q2. From memory, fill in these blanks with prefix abbreviations.
a. $2.6 \times 10^{-1} \mathrm{~L}=2.6$ \qquad L
b. $6 \times 10^{-2} \mathrm{~g}=6 \ldots \mathrm{~g}$

Q3. Fill in these blanks with exponential terms (use the table above if needed).
a. 1 gigajoule $=1 \mathrm{x}$ \qquad joules
b. $9 \mu \mathrm{~m}=9 \mathrm{x}$ \qquad m

Answers

1a. $\quad 10^{3}$ grams $=1$ kilogram
1b. 2×10^{-3} meters $=2$ millimeters
2a. $2.6 \times 10^{-1} \mathrm{~L}=2.6 \mathrm{dL}$.
2b. $6 \times 10^{-2} \mathrm{~g}=6 \mathrm{cg}$
3a. 1 gigajoule $=1 \times 10^{9}$ joules
3b. $9 \mu \mathrm{~m}=9 \times 10^{-6} \mathrm{~m}$

From the prefix definitions, even if you are not yet familiar with the quantity that a unit is measuring, you can convert between its prefix-unit value and its value using exponentials.

Science Versus Computer-Science Prefixes

Computer science, which calculates based on powers of 2 , uses slightly different definitions for prefixes, such as kilo- $=2^{10}=1,024$ instead of 1,000 .
However, in chemistry and all other sciences, for all base units, the prefix to power-of-10 relationships in the metric-prefix table are exact definitions.

Learning the Additional Prefixes

To solve calculations, you will need to recall the rows in the table of 13 metric prefixes quickly and automatically. To begin, practice writing the table from memory. To help, look for patterns and use memory devices. Note

- tera $=\mathbf{T}=10^{\mathbf{T}}$ welve and nano (which connotes small) $=\mathbf{1 0}^{-}$-nine .

Focusing on those two can help to "anchor" the prefixes near them in the table.
Then make a self-quiz: on a sheet of paper, draw a table 3 columns across and 14 rows down. In the top row, write

Prefix	Abbreviation	Means

Then fill in the table. Repeat writing the table until you can do so from memory, without looking back. Once you can do so, try to do the problems below without looking back at your table.

Practice A: Use a sticky note to mark the answer page at the end of this lesson.

1. From memory, add exponential terms to these blanks.
a. 7 microseconds $=7 x$ \qquad seconds
b. $9 \mathrm{fg}=9 \mathrm{x} \quad \mathrm{g}$
c. $8 \mathrm{~cm}=8 \mathrm{x}$ \qquad m
d. $1 \mathrm{ng}=1 \mathrm{x}$ \qquad g
2. From memory, add full metric prefixes to these blanks.
a. $6 \times 10^{-2} \mathrm{amps}=6$ \qquad amps
b. 45×10^{9} watts $=45$ \qquad watts
3. From memory, add metric prefix abbreviations to these blanks.
a. $\quad 10^{12} \mathrm{~g}=1$ g
b. $10^{-12} \mathrm{~s}=1 _\mathrm{s}$
c. $6 \times 10^{-9} \mathrm{~m}=6$ \qquad m
d. $5 \times 10^{-1} \mathrm{~L}=5$ \qquad L
e. $4 \times 10^{1} \mathrm{~L}=$ \qquad L
f. $16 \times 10^{6} \mathrm{~Hz}=16$ \qquad Hz
4. When writing prefix abbreviations by hand, write so that you can distinguish between (add a prefix abbreviation) $5 \times 10^{-3} \mathrm{~g}=5 \ldots \mathrm{~g}$ and $5 \times 10^{6} \mathrm{~g}=5 \ldots \mathrm{~g}$
5. For which prefix abbreviations is the first letter always capitalized?
6. Write 0.30 gigameters/second without a prefix, in scientific notation.

Converting Between Prefix Formats

To solve calculations in chemistry, we will often use conversion factors that are constructed from metric prefix definitions. For those definitions, we have learned two types of equalities.

- Our "meter stick" equalities are based on what one unit is equal to:

$$
\underline{1 \text { METER }} \equiv 10 \text { deciMETERS } \equiv 100 \text { centiMETERS } \equiv 1,000 \text { milliMETERS }
$$

- Our prefix definitions are based on what one prefix is equal to, such as nano $=10^{-9}$. It is essential to be able to correctly write both forms of the metric definitions, because work in science often uses both.

For example, to convert between milliliters and liters, we can use either

- $1 \mathrm{~mL}=\mathbf{1 0}^{\mathbf{- 3}} \mathrm{L}$, based on what 1 milli- means, or
- $1,000 \mathrm{~mL}=1 \mathrm{~L}$; which is an easy-to-visualize definition of one liter.

Those two equalities are equivalent. The second is simply the first with the numbers on both sides multiplied by 1,000.

However, note that $\mathbf{1} \mathrm{mL}=10^{-3} \mathrm{~L}$, but $\mathbf{1} \mathrm{L}=10^{\mathbf{3}} \mathrm{mL}$. The numbers in the equalities change depending on whether the 1 is in front of the prefix or the unit. Which format should we use? How do we avoid errors?
In these lessons, we will generally use the one prefix equalities to solve problems. After learning the fundamental definitions for the 10 prefixes in the table, such as 1 milli- $=$ $10^{\mathbf{- 3}}$, using the definitions makes conversions easy to check.

Once those prefix, abbreviation, and meanings are in memory, we will then need to "watch where the 1 is."

If you need to write or check prefix equalities in the "one unit =" format, you can derive them from the one prefix definitions, by writing the table if needed.
$\underline{\text { For example, }} 1$ gram $=$ \qquad micrograms?

- Since 1 micro-anything $=10^{\mathbf{- 6}}$ anythings, then
- 1 microgram $=10^{-6}$ grams
- To get a 1 in front of gram, we multiply both sides by 10^{6}, so
- $\mathbf{1}$ gram $=10^{6} \mathbf{~ m i c r o g r a m s ~}\left(=\mathbf{1 0}^{\mathbf{6}} \boldsymbol{\mu g}=1,000,000\right.$ micrograms $)$

The steps above can be summarized as the reciprocal rule for prefixes:

```
If 1 prefix- = 10}\mp@subsup{\mathbf{10}}{}{\textrm{a}},1\mathrm{ unit = 10}\mp@subsup{\mathbf{10}}{}{\mathbf{a}}\mathrm{ prefix-units
```

Another way to state the reciprocal rule for prefixes:
To change a prefix definition between the " 1 prefix- $=$ " format and the " 1 unit $=$ " format, change the sign of the exponent.

If you need to check your logic, write the most familiar example:
Since 1 milliliter $=\mathbf{1 0}^{\mathbf{- 3}}$ liter, then 1 liter $=\mathbf{1 0}^{\mathbf{3}}$ milliliters $=1,000 \mathrm{~mL}$
Try these examples.
Q1. 1 nanogram $=1 \times \ldots$ grams, so
1 gram $=1 \mathrm{x}$ \qquad nanograms

Q2. $1 \mathrm{dL}=1 \mathrm{x}$ \qquad liters,
so
$1 \mathrm{~L}=1 \mathrm{x}$ \qquad dL

Answers

$\begin{array}{lll}\text { A1. } 1 \text { nanogram }=1 \times \mathbf{1 0}^{-\mathbf{9}} \text { grams, so } & 1 \text { gram }=1 \times \mathbf{1 0}^{\mathbf{9}} \text { nanograms } \\ \text { A2. } 1 \mathrm{dL}=1 \times \mathbf{1 0}^{\mathbf{- 1}} \mathbf{~ l i t e r s , ~} & \text { so } & 1 \mathrm{~L}=1 \times \mathbf{1 0}^{\mathbf{1}} \mathrm{dL}=10 \mathrm{dL}\end{array}$

To summarize:

- When using metric prefix definitions, be careful to note whether the $\mathbf{1}$ is in front of the prefix or the unit.
- To avoid confusing the signs of the exponential terms in prefix definitions, memorize the table of 13 one prefix definitions. Then, if you need an equality with a " 1 unit $=1 \mathbf{1 0}^{\mathbf{x}}$ prefix-unit" format, reverse the sign of the prefix definition.

Practice B: Write the table of the 13 metric prefixes until you can do so from memory, then try to do these without consulting the table.

1. Fill in the blanks with exponential terms.
a. $\quad 1$ terasecond $=1 \mathrm{x}$ \qquad seconds, so 1 second $=1 x$ \qquad teraseconds
b. $1 \mu \mathrm{~g}=1 \mathrm{x}$ \qquad grams,
so $\quad 1 \mathrm{~g}=1 \mathrm{x}$ \qquad μg
2. Apply the reciprocal rule to add exponential terms to these one unit equalities.
a. 1 gram $=$ \qquad centigrams
b. 1 meter $=$ \qquad picometers
c. $1 \mathrm{~s}=$ \qquad ms
d. $1 \mathrm{~s}=$ \qquad Ms
3. Add exponential terms to these blanks. Watch where the 1 is!
a. 1 micromole $=$ \qquad moles
b. $1 \mathrm{~g}=1 \mathrm{x}$ \qquad Gg
c. 1 hectogram $=1 \mathrm{x}$ \qquad grams
d. \qquad $\mathrm{kg}=1 \mathrm{~g}$
e. \qquad $\mathrm{ns}=1 \mathrm{~s}$
f. $1 \mathrm{fL}=$ \qquad L

ANSWERS

Practice A

1. a. 7 microseconds $=7 \times 10^{-6}$ seconds
b. $9 \mathrm{fg}=9 \times 10^{-15} \mathrm{~g}$
c. $8 \mathrm{~cm}=8 \times 10^{-2} \mathrm{~m}$
d. $1 \mathrm{ng}=1 \times 10^{-9} \mathrm{~g}$
2. a. $6 \times 10^{-2} \mathrm{amps}=6$ centiamps
b. 45×10^{9} watts $=45$ gigawatts
3. a. $10^{12} \mathrm{~g}=1 \mathrm{Tg}$
b. $10^{-12} \mathrm{~s}=1 \mathrm{ps}$
c. $6 \times 10^{-9} \mathrm{~m}=6 \mathrm{~nm}$
d. $5 \times 10^{-1} \mathrm{~L}=5 \mathrm{dL}$
e. $4 \times 10^{1} \mathrm{~L}=4 \mathrm{daL}$
f. $16 \times 10^{6} \mathrm{~Hz}=16 \mathrm{MHz}$
4. 5 mg and 5 Mg
5. M-, G-, and T-.
6. 3.0×10^{8} meters/second

Practice B

1. a. 1 terasecond $=1 \times 10^{12}$ seconds, so 1 second $=1 \times 10^{-12}$ teraseconds
b. $1 \mu \mathrm{~g}=1 \times 10^{-6}$ grams, so $1 \mathrm{~g}=1 \times 10^{6} \mu \mathrm{~g}$
2. a. 1 gram $=10^{2}$ centigrams (For " 1 unit $=$ ", take reciprocal (reverse sign) of prefix meaning)
b. 1 meter $=10^{12}$ picometers
c. $1 \mathrm{~s}=10^{3} \mathrm{~ms}$
d. $1 \mathrm{~s}=1 \times 10^{-6} \mathrm{Ms}$
3. a. 1 micromole $=10^{-6}$ moles
b. $1 \mathrm{~g}=1 \times 10^{-9} \mathrm{Gg}$
c. 1 hectogram $=1 \times 10^{2}$ grams
d. $10^{-3} \mathrm{~kg}=1 \mathrm{~g}$
e. $10^{9} \mathrm{~ns}=1 \mathrm{~s}$
f. $1 \mathrm{fL}=10^{-15} \mathrm{~L}$

Lesson 2C: Cognitive Science - and Flashcards

In this lesson, you will learn a system that will help you to automatically recall the vocabulary needed to read science with comprehension and the facts needed to solve calculations.

Cognitive science studies how the mind works and how it learns. The model that science uses to describe learning includes the following fundamentals.

- The purpose of learning is to solve problems. You solve problems using information from your immediate environment and your memory.

The human brain contains different types of memory, including

- Working memory: the part of your brain where you solve problems.
- Short-term memory: information that you remember for only a few days.
- Long-term memory: information that you can recall for many years.

Working memory is limited, but human long-term memory has enormous capacity. The goal of learning is to move new information from short into long-term memory so that it can be recalled by working memory for years after initial study. If information is not moved into long-term memory, useful long-term learning has not taken place.

Children learn speech naturally, but most other learning requires repeated thought about the meaning of new information, plus practice at recalling new facts and using new skills that is timed in ways that encourage the brain to move new learning from short to long-term memory.

The following principles of cognitive science will be helpful to keep in mind during your study of chemistry and other disciplines.

1. Learning is cumulative. Experts in a field learn new information quickly because they already have in long-term memory a storehouse of knowledge about the context surrounding new information. That storehouse must be developed over time, with practice.
2. Learning is incremental (done in small pieces). Especially for an unfamiliar subject, there is a limit to how much new information you can move into long-term memory in a short amount of time. Knowledge is extended and refined gradually. In learning, steady wins the race.
3. Your brain can do parallel processing. Though adding information to long term memory is a gradual process, studies indicate that your brain can work on separately remembering what something looks like, where you saw it, what it sounds like, how you say it, how you write it, and what it means, all at the same time. The cues associated with each separate type of memory can help to trigger the recall of information needed to solve a problem, so it helps to use multiple strategies. When
learning new information: listen to it, see it, say it, write it, and try to connect it to other information that helps you to remember what it means.
4. The working memory in your brain is limited. Working memory is where you think. Try multiplying 556 by 23 in your head. Now try it with a pencil, a paper, and your head. Because of limitations in working memory, manipulating multiple pieces of new information "in your head" is difficult. Learning stepwise procedures (standard algorithms) that write the results of middle steps is one way to reduce "cognitive load" during problem solving.
5. "Automaticity in the fundamentals" is another learning strategy that can help to overcome limitations in working memory. When you can recall facts quickly due to repeated practice, more working memory is available for higher level thought.
You can do work that is automatic while you think (most of us can think while walking), but it is difficult to think about more than one problem at once.
6. Concepts are crucial. Your brain works to construct a "conceptual framework" to categorize knowledge being learned so that you can recall facts and procedures when you need them. The brain tends to store information in long-term memory only if it is in agreement with your framework of concepts. In addition, if you have a more complete and accurate understanding of "the big picture," your brain is better able to judge which information should be selected to solve a problem.
Concepts do not replace the need to move key facts and procedures into your long-term memory, but concepts speed initial learning, recall, and appropriate application of your knowledge in long-term memory.
7. "You can always look it up" is a poor strategy for problem-solving. Your working memory is quite limited in how much information it can manipulate that is not in your long-term memory. The more information you must stop to look up, the less likely you will be able to follow your train of thought to the end of a complex problem.
How can you promote the retention of needed fundamentals? It takes practice, but some forms of practice are more effective than others. Attention to the following factors can improve your retention of information in long-term memory.
8. Overlearning. Practice once until you are perfect and you will only recall new information for a few days. To be able to recall new facts and skills for more than a few days, repeated practice to perfection is necessary.
9. The spacing effect. To retain what you learn, 20 minutes of study spaced over 3 days is more effective than one hour of study for one day.
Studies of "massed versus distributed practice" show that if the initial learning of facts and vocabulary is practiced over 3-4 days, then re-visited weekly for 2-3 weeks, then monthly for 3-4 months, it can often be recalled for decades thereafter.
10. Effort. Experts in a field usually attribute their success to "hard work over an extended period of time" rather than "talent."
11. Core skills. The facts and processes you should practice most often are those needed most often in the discipline.
12. Get a good night's sleep. There is considerable evidence that while you sleep, your brain reviews the experience of your day to decide what to store in long-term memory. Sufficient sleep promotes retention of what you learn.
[For additional science that relates to learning, see Willingham, Daniel [2007] Cognition: The Thinking Animal. Prentice Hall, and Bruer, John T. [1994] Schools for Thought. MIT Press.]]

Practice A

1. What is "overlearning?" 2. What is the "spacing effect?"
2. What are two learning strategies that can help to overcome inherent limitations on the manipulation of new information in your working memory?

Flashcards

What is more important in learning: Knowing the facts or the concepts? Cognitive studies have found that the answer is: both. However, to "think as an expert," you need a storehouse of factual information in memory that you can apply to new and unique problems.
In these lessons, we will use the following flashcard system to master fundamentals that need to be recalled automatically in order to efficiently solve problems. Using this system, you will make two types of flashcards:

- "One-way cards" for questions that make sense in one direction; and
- "Two-way" cards for facts that need to be recalled in both directions.

If you have access to about 303×5 index cards, you can get started now. Plan to buy tomorrow about 100-200 3×5 index cards, lined or unlined. (A variety of colors is helpful but not essential.) Complete these steps.

1. On 12-15 of your 30 initial cards (of the same color if possible), cut a triangle off the topright corner, making cards like this:

These cards will be used for questions that go in one direction.
Keeping the notch at the top right will identify the front side.
2. Using the following table, cover the answers in the right column with a folded sheet or index card. For each question in the left column, verbally answer, then slide the cover sheet down to check your answer. Put a check beside questions that you answer accurately and without hesitation. When done, write the questions and answers without checks onto the notched cards.
Front-side of cards (with notch at top right):
Back Side -- Answers

To convert to scientific notation, move the decimal to...	After the first number not a zero
If you make the significand larger	Make the exponent smaller
42^{0}	Any number to the zero power =1

To add or subtract in exponential notation	Make all exponents the same
Simplify $1 / 10^{-x}$	10^{x}
To divide exponentials	Subtract the exponents
To bring an exponent from the bottom of a fraction to the top	Change its sign
$1 \mathrm{cc} \equiv 1 \ldots \ldots 1$	$1 \mathrm{cc} \equiv 1 \mathrm{~cm}^{3} \equiv 1 \mathrm{~mL}$
0.0018 in scientific notation $=$	1.8×10^{-3}
$1 \mathrm{~L} \equiv \ldots \mathrm{~mL} \equiv \ldots \mathrm{dm}^{3}$	$1 \mathrm{~L} \equiv 1,000 \mathrm{~mL} \equiv 1 \mathrm{dm}^{3}$
To multiply exponentials	Add the exponents
Simplify $1 / 10^{\mathrm{x}}$	$10^{-\mathrm{x}}$
74 in scientific notation $=$	7.4×10^{1}
The historic definition of 1 gram	The mass of $1 \mathrm{~cm}^{3}$ of liquid water at $4^{\circ} \mathrm{C}$.
8×7	56
$42 / 6$	7

Any multiplication or division up to 12 's that you cannot answer instantly? Add to your list of one-sided cards. If you need a calculator to do number math, parts of chemistry such as "balancing an equation" will be frustrating. With flashcard practice, you will quickly be able to remember what you need to know.
3. To make "two-way" cards, use the index cards as they are, without a notch cut.

For the following cards, first cover the right column, then put a check on the left if you can answer the left column question quickly and correctly. Then cover the left column and check the right side if you can answer the right-side automatically.
When done, if a row does not have two checks, make the flashcard.
Two-way cards (without a notch):

$10^{3} \mathrm{~g}$ or $1,000 \mathrm{~g}=1 _\mathrm{g}$	$1 \mathrm{~kg}=\ldots \mathrm{g}$
Boiling temperature of water	100 degrees Celsius -if 1 atm . pressure
1 nanometer $=1 \times \ldots$ meters	$1 _$meter $=1 \times 10^{-9}$ meters
Freezing temperature of water	0 degrees Celsius
$4.7 \times 10^{-3}=\ldots(\mathrm{nbr})$	$0.0047=4.7 \times 10^{?}$

$1 \mathrm{GHz}=10 ? \mathrm{~Hz}$	$10^{9} \mathrm{~Hz}=1 _\mathrm{Hz}$
$1 \mathrm{pL}=10^{?} \mathrm{~L}$	$10^{-12} \mathrm{~L}=1 _\mathrm{L}$
$3 / 4=0 . ?$	$0.75=? / ?$
$1 / 8=0 . ?$	$0.125=1 / ?$

$2 / 3=0 . ?$	$0.666 \ldots=? / ?$
$1 / 80=0 . ?$	$0.0125=1 / ?$
$1 \mathrm{dm}^{3}=1$	$1 \mathrm{~L}=1-$
$1 / 4=0 . ?$	$0.25=1 / ?$

More two-way cards (without a notch) for the metric-prefix definitions.

kilo $=x 10$?	$x 10^{3}=$? Prefix
nano $=\mathrm{x} 10$?	x $10^{-9}=$? pref.
giga $=\times 10$?	$\times 10^{9}=$? Prefix
milli $=\mathrm{x} 10$?	$\times 10^{-3}=$? pref.
deci $=\mathrm{x} 10$?	$\times 10^{-1}=$? pref.
tera $=\mathrm{x} 10$?	$\times 10^{12}=$? pref.
pico $=\times 10$?	$\times 10^{-12}=$? pref
hecto $=x 10$?	$\times 10^{2}=$? Prefix
deka $=\mathrm{x} 10$?	x $10^{1}=$? Prefix
femto $=x 10$?	x $10-15=$? pref
mega $=\times 10$?	$\times 10^{6}=$? Prefix
micro $=\mathrm{x} 10$?	$\times 10^{-6}=$? pref.
centi $=\mathrm{x} 10$?	$\times 10^{-2}=$? pref.

$d=x 10$?	x $10^{-1}=$? abbr.
$\mathrm{m}=\mathrm{x} 10$?	x $10^{-3}=$? abbr.
$\mathrm{T}=\mathrm{x} 10$?	x $10^{12}=$? abbr .
$\mathrm{k}=\mathrm{x} 10$?	$\times 10^{3}=$? abbr .
$\mathrm{f}=\mathrm{x} 10$?	x $10^{-15}=$? abb
$\mu=x 10$?	x $10^{-6}=$? abbr.
$\mathrm{G}=\mathrm{x} 10$?	$\times 10^{9}=$? abbr
$\mathrm{da}=\mathrm{x} 10$?	$\mathrm{x} 10^{1}=$? abbr.
$p=x 10$?	x $10^{-12}=$? abb
$c=x 10$?	$\times 10^{-2}=$? abbr.
$h=x 10$?	x $10^{2}=$? abbr .
$\mathrm{M}=\mathrm{x} 10$?	x $10^{6}=$? abbr .
$\mathrm{n}=\mathrm{x} 10$?	$\times 10^{-9}=$? abbr.

micro $=$? abbr.	$\mu=$? pref.
mega $=$? abbr.	$\mathrm{M}=$? p pref.
deka $=$? abbr.	da $=$? pref.
pico $=$? abbr.	$\mathrm{p}=$? prefix
deci $=$? abbr.	$\mathrm{d}=$? prefix
hecto $=$? abbr.	$\mathrm{h}=$? prefix
tera $=$? abbr.	$\mathrm{T}=$? prefix
milli $=$? abbr.	$\mathrm{m}=$? pref.
femto $=$? abbr.	$\mathrm{f}=$? prefix
giga $=$? abbr.	$\mathrm{G}=$? pref.
nano $=$? abbr.	$\mathrm{n}=$? prefix
centi $=$? abbr.	$\mathrm{c}=$? prefix
kilo $=$? abbrev.	$\mathrm{k}=$? prefix

Which cards you need will depend on your prior knowledge, but when in doubt, make the card. On fundamentals, you need quick, confident, accurate recall -- every time.
4. Practice with one type of card at a time.

- For front-sided cards, if you get a card right quickly, place it in the got it stack. If you miss a card, say it. Close your eyes. Say it again. And again. If needed, write it several times. Return that card to the bottom of the do deck. Practice until every card is in the got-it deck.
- For two-sided cards, do the same steps as above in one direction, then the other.

5. Master the cards at least once, then apply them to the Practice on the topic of the new cards. Treat Practice as a practice test.
6. For 3 days in a row, repeat those steps. Repeat again before working assigned problems, before your next quiz, and before your next test that includes this material.
7. Make cards for new topics early: before the lectures on a topic if possible. Mastering fundamentals first will help in understanding lecture.
8. Rubber band and carry new cards. Practice during "down times."
9. After a few modules or topics, change card colors.

This system requires an initial investment of time, but in the long run it will save time and improve achievement.
The above flashcards are examples. Add cards of your design and choosing as needed.

Flashcards, Charts, or Lists?

What is the best strategy for learning new information? Use multiple strategies: numbered lists, mnemonics, phrases that rhyme, flashcards, reciting, and writing what must be remembered. Practiced repeatedly, spaced over time.

For complex information, automatic recall may be less important than being able to methodically write out a chart for information that falls into patterns.

For the metric system, learning flashcards and the prefix chart and picturing the meter-stick relationships all help to fix these fundamentals in memory.

Practice B: Run your set of flashcards until all cards are in the "got-it" pile. Then try these problems. Make additional cards if needed. Run the cards again in a day or two.

1. Fill in the blanks.

Format: 1 prefix-	1 base unit
$\mathbf{1} \mu \mathrm{METER}=\ldots \quad$ METERS	1 METER $=\ldots \quad \mu$ METERS
1 gigawatt $=\ldots \ldots$ watts	1 watt $=\ldots \quad$ gigawatts
1 nanoliter $=\ldots \quad$ liter	$\ldots \quad$ nanoliters $=1$ liter

2. Add exponential terms to these blanks. Watch where the 1 is!
a. $\quad 1$ picocurie $=$ \qquad curies
b. 1 megawatt = \qquad watts
c. 1 dag $=$ \qquad g
d. 1 mole $=$ \qquad millimoles
e. $1 \mathrm{~m}=$ \qquad nm
f. $1 \mathrm{kPa}=$ \qquad Pa
3. Do these without a calculator.
a. $10^{-6} / 10^{-8}=$
b. $1 / 5=$ \qquad
c. $1 / 50=$ \qquad
4. For the following atoms, write the symbol.
a. \quad Helium $=$ \qquad b. Hydrogen = \qquad c. Sodium $=$ \qquad
5. For the following symbols, write the atom name.
a. $\mathrm{N}=$ \qquad b. $\mathrm{Ne}=$ \qquad c. $\mathrm{B}=$ \qquad

ANSWERS

Practice A

1. Repeated practice to perfection. 2. Study over several days gives better retention than "cramming."
2. Learning stepwise procedures (algorithms) and learning fundamentals until they can be recalled automatically.

Practice B

1.

$1 \mu \mathrm{METER}=\underline{10^{-6}}$ METERS	1 METER $=\underline{10^{6}} \mu \mathrm{METERS}$
1 gigawatt $=\underline{\mathbf{1 0}^{9}}$ watts	1 watt $=\underline{10^{-9}}$ gigawatts
1 nanoliter $=\underline{10^{-9}}$ liters	$\underline{10^{9}}$ nanoliters $=1$ liter

2. a. 1 picocurie $=10^{-12}$ curies
b. 1 megawatt $=10^{6}$ watts
c. $1 \mathrm{dag}=10^{1} \mathrm{~g}$
d. 1 mole $=10^{3}$ millimoles
e. $1 \mathrm{~m}=10^{9} \mathrm{~nm}$
f. $1 \mathrm{kPa}=10^{3} \mathrm{~Pa}$
3. a. $10^{-6} / 10^{-8}=10^{-6+8}=10^{2}$
b. $1 / 5=0.20$
c. $1 / 50=0.020$

4a. Helium $=\mathrm{He}$
4b. Hydrogen $=\mathbf{H}$
4c. Sodium $=\mathrm{Na}$
5a. $\mathrm{N}=$ Nitrogen
5b. $\mathrm{Ne}=\mathrm{Neon}$
5c. B = Boron

Lesson 2D: Calculations With Units

Pretest: If you can do the following two problems correctly, you may skip this lesson. Answers are at the end of the lesson.

1. Find the volume of a sphere that is 4.0 cm in diameter. $\left(\mathrm{V}_{\text {sphere }}=4 / 3 \pi \mathrm{r}^{3}\right)$.
2. Multiply: $2.0 \frac{\mathrm{~g} \cdot \mathrm{~m}}{\mathrm{~s}^{2}} \cdot \frac{3.0 \mathrm{~m}}{4.0 \times 10^{-2}} \cdot 6.0 \times 10^{2} \mathrm{~s}=$
(Try doing this lesson without a calculator except as noted.)

Adding and Subtracting With Units

Many calculations in mathematics consist of numbers without units. In science, however, calculations are nearly always based on measurements of physical quantities. A measurement consists of a numeric value and its unit.
When doing calculations in science, it is essential to write the unit after the numbers in measurements and calculations. Why?

- Units give physical mean to a quantity.
- Units are the best indicators of what steps are needed to solve problems, and
- Units provide a check that you have done a calculation correctly.

When solving calculations, the math must take into account both the numbers and their units. Use the following three rules.

Rule 1. When adding or subtracting, the units must be the same in the quantities being added and subtracted, and those same units must be added to the answer.

Rule 1 is logical. Apply it to these two examples.
A. 5 apples +2 apples $=$ \qquad
B. 5 apples +2 oranges $=$

* * * * *

A is easy. B cannot be added. It makes sense that you can add two numbers that refer to apples, but you can't add apples and oranges. By Rule 1, you can add numbers that have the same units, but you cannot add numbers directly that do not have the same units.
Apply Rule 1 to this problem: 14.0 grams
-7.5 grams

* * * * *

$$
\begin{array}{r}
14.0 \text { grams } \\
-\quad 7.5 \text { grams } \\
\hline-
\end{array}
$$

$$
6.5 \text { grams If the units are all the same, you can add or subtract numbers, }
$$ but you must add the common unit to the answer.

Multiplying and Dividing With Units

The rule for multiplying and dividing with units is different, but logical.
Rule 2. When multiplying and dividing units, the units multiply and divide.
Complete this example of unit math: $\mathrm{cm} \mathrm{x} \mathrm{cm}=$

```
* * * * *
```

$\mathrm{cm} \times \mathrm{cm}=\mathrm{cm}^{2}$ Units obey the laws of algebra. Try: $\frac{\mathrm{cm}^{5}}{\mathrm{~cm}^{2}}=$
\qquad

$$
\frac{\mathrm{cm}^{5}}{\mathrm{~cm}^{2}}=\text { can be solved as } \quad \frac{\mathrm{cm} \cdot \mathrm{~cm} \cdot \mathrm{~cm} \cdot \mathrm{~cm} \cdot \mathrm{em}}{\mathrm{~cm} \cdot \mathrm{em}}=\mathrm{cm}^{3}
$$

or by using the rules for exponential terms:
$\frac{\mathrm{cm}^{5}}{\mathrm{~cm}^{2}}=\mathrm{cm}^{5-2}=\mathrm{cm}^{3} \quad$ Both methods arrive at the same answer (as they must).
Rule 3. When multiplying and dividing, group numbers, exponentials, and units separately. Solve the three parts separately, then recombine the terms.

Apply Rule 3 to this problem: If a postage stamp has the dimensions $2.0 \mathrm{~cm} \times 4.0 \mathrm{~cm}$, the surface area of one side of the stamp $=$ \qquad

$$
\begin{aligned}
& \text { Area of a rectangle }=l \times w= \\
& \quad=2.0 \mathrm{~cm} \times 4.0 \mathrm{~cm}=(2.0 \times 4.0) \times(\mathrm{cm} \mathrm{x} \mathrm{~cm})=8.0 \mathrm{~cm}^{2}=8.0 \text { square centimeters }
\end{aligned}
$$

By Rule 2, the units must obey the rules of multiplication and division. By Rule 3, the unit math is done separately from the number math.
Units follow the familiar laws of multiplication, division, and powers, including "like units cancel."

Apply Rule 3 to these:
a. $\frac{8.0 \mathrm{~L}^{6}}{2.0 \mathrm{~L}^{2}}=$ \qquad
b. $\frac{9.0 \mathrm{~m}^{6}}{3.0 \mathrm{~m}^{6}}=$ \qquad

* * * * *

a. $\frac{8.0 \mathrm{~L}^{6}}{2.0 \mathrm{~L}^{2}}=\frac{8.0}{2.0} \cdot \frac{\mathrm{~L}^{6}}{\mathrm{~L}^{2}}=4.0 \mathrm{~L}^{4}$
b. $\frac{9.0 \mathrm{~m}^{6}}{3.0 \mathrm{~m}^{6}}=3.0$ (with no unit.)

In science, the unit math must be done as part of calculations. A calculated unit must be included as part of calculated answers (except in rare cases, such as part b above, when all of the units cancel).
On the following problem, apply separately the math rules for numbers, exponential terms, and units.

$$
\frac{12 \times 10^{-3} \mathrm{~m}^{4}}{3.0 \times 10^{2} \mathrm{~m}^{2}}=
$$

\qquad

* * * * *

When calculating, you often need to use a calculator to do the number math, but both the exponential and unit math nearly always should be done without a calculator.
In the problems above, the units were all the same. However, units that are different can also be multiplied and divided by the usual laws of algebra. Complete this calculation:

$$
4.0 \mathrm{~g} \cdot \mathrm{~m} \cdot 3.0 \mathrm{~m} \cdot \frac{6.0 \mathrm{~s}}{\mathrm{~s}^{2}}=
$$

When multiplying and dividing, do the number, exponential, and unit math separately.

This answer unit can also be written as $\mathbf{g} \cdot \mathbf{s}^{\mathbf{- 1}}$, but you will find it helpful to use the \mathbf{x} / \mathbf{y} unit format until we work with mathematical equations later in the course.

Practice: Do not use a calculator except as noted. If you need just a few reminders, do Problems 11 and 14. If you need more practice, do more. After completing each problem, check your answer below. If you miss a problem, review the rules to figure out why before continuing.

1. $16 \mathrm{~cm}-2 \mathrm{~cm}=$
2. $\left(\mathrm{m}^{4}\right)(\mathrm{m})=$
3. $\frac{10^{5}}{10^{-2}}=$
4. 3.0 meters $\cdot 9.0$ meters $=$
5. $\frac{24 \mathrm{~L}^{5}}{3.0 \mathrm{~L}^{-4}}=$
6. $12 \mathrm{~cm} \cdot 2 \mathrm{~cm}=$
7. $\mathrm{m}^{4} / \mathrm{m}=$
8. $\frac{\mathrm{s}^{-5}}{\mathrm{~s}^{2}}=$
9. $3.0 \mathrm{~g} / 9.0 \mathrm{~g}=$
10. $\frac{18 \times 10^{-3} \mathrm{~g} \cdot \mathrm{~m}^{5}}{3.0 \times 10^{1} \mathrm{~m}^{2}}=$
11. $12 \times 10^{-2} \frac{\mathrm{~L} \cdot \mathrm{~g}}{\mathrm{~s}} \cdot 2.0 \mathrm{~m} \cdot \frac{4.0 \mathrm{~s}^{3}}{6.0 \times 10^{-5} \mathrm{~L}^{2}}=$
12. A rectangular box has dimensions of $2.0 \mathrm{~cm} \times 4.0 \mathrm{~cm} \times 6.0 \mathrm{~cm}$. Without a calculator, calculate its volume.
13. Do pretest problem 1 at the beginning of this lesson (use a calculator).
14. Do pretest problem 2 at the beginning of this lesson (without a calculator).

ANSWERS Both the number and the unit must be written and correct.
Pretest: See answers to Problems 13 and 14 below.

1. 14 cm
2. $24 \mathrm{~cm}^{2}$
3. $m^{(4+1)}=m^{5}$
4. $m^{(4-1)}=m^{3}$
5. 10^{7}
6. s^{-7}
7. 27 meters 2
8. 0.33 (no unit)
9. $8.0 \mathrm{~L}^{9}$
10. $6.0 \times 10^{-4} \mathrm{~g} \cdot \mathrm{~m}^{3}$
11. $16 \times 10^{3} \mathrm{~g} \cdot \mathrm{~m} \cdot \mathrm{~s}^{2}$
12. $V_{\text {rectangular solid }}=$ length times width times height $=48 \mathrm{~cm}^{3}$
L
13. Diameter $=4.0 \mathrm{~cm}$, radius $=2.0 \mathrm{~cm}$.

$$
V_{\text {sphere }}=4 / 3 \pi \mathrm{r}^{3}=4 / 3 \pi(2.0 \mathrm{~cm})^{3}=4 / 3 \pi\left(8.0 \mathrm{~cm}^{3}\right)=(32 / 3) \pi \mathrm{cm}^{3}=34 \mathrm{~cm}^{3}
$$

14. $2.0 \mathrm{~g} \cdot \mathrm{~m}_{\mathrm{s}^{2}} \cdot \frac{3.0 \mathrm{~m}}{4.0 \times 10^{-2}} \cdot 6.0 \times 10^{2} \mathrm{~s}=\frac{(2.0)(3.0)(6.0)}{4.0} \cdot 10^{4} \cdot \frac{\mathrm{~g} \cdot \mathrm{~m} \cdot \mathrm{~m} \cdot \mathrm{~s}}{\mathrm{~s}^{2}}=9.0 \times 10^{4} \frac{\mathrm{~g} \cdot \mathrm{~m}^{2}}{\mathrm{~s}}$

SUMMARY - The Metric System

1. 1 METER $\equiv 10$ deciMETERS
$\equiv 100$ centiMETERS
$\equiv 1000$ milliMETERS
1,000 METERS $\equiv 1$ kiloMETER
2. $\mathbf{1} \mathbf{~ m i l l i M E T E R} \equiv \mathbf{1} \mathbf{~ m m}=10^{-\mathbf{3}}$ METER

1 centiMETER $\equiv \mathbf{1 ~ c m ~ = 1 0 ~} 0^{-2}$ METER
$\mathbf{1}$ deciMETER $\equiv \mathbf{1 ~ d m}=10^{-1}$ METER
$\mathbf{1}$ kiloMETER $\equiv \mathbf{1} \mathbf{~ k m}=10^{\mathbf{3}}$ METER
3. Any unit can be substituted for METER above.
4. $1 \mathrm{~cm}^{3} \equiv 1 \mathrm{~mL} \equiv 1 \mathrm{cc}$
5. 1 liter $\equiv 1000 \mathrm{~mL} \equiv 1 \mathrm{dm}^{3}$
6. $1 \mathrm{~cm}^{3} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \equiv 1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}=1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
7. meter $=\mathrm{m} ;$ gram $=\mathrm{g}$; second $=\mathrm{s}$
8. If prefix- $=1 \mathbf{1 0}^{\mathbf{a}}, 1$ unit $=\mathbf{1 0}^{\mathbf{- a}}$ prefix-units
9. To change a prefix definition from a " 1 prefixunit = " format to a " 1 base unit = " format, change the exponent sign.

Prefix	Abbreviation	Means
tera-	T	$\times 10^{12}$
giga-	G	$\times 10^{9}$
mega-	M	$\times 10^{6}$
kilo-	k	$\times 10^{3}$
hecto-	h	$\times 10^{2}$
deka-	da	$\times 10^{1}$
deci-	d	$\times 10^{-1}$
centi-	c	$\times 10^{-2}$
milli-	m	$\times 10^{-3}$
micro-	$\mathrm{f} \mathrm{(mu)} \mathrm{or} \mathrm{u}$	$\times 10^{-6}$
nano-	n	$\times 10^{-9}$
pico-	p	$\times 10^{-12}$
femto-	f	$\times 10^{-15}$

10. Rules for units in calculations.

a. When adding or subtracting, the units must be the same in the numbers being added and subtracted, and those same units must be added to the answer.
b. When multiplying and dividing units, the units multiply and divide.
c. When multiplying and dividing, group the numbers, exponentials, and units separately. Solve the three parts, then recombine the terms.

Module 3 - Significant Figures

Pretest: If you think you know how to use significant figures correctly, take the following pretest to be sure. Check your answers at bottom of this page. If you do all of the pretest perfectly, skip Module 3.

1. How many significant figures are in each of these?
a. 0.002030
b. 670.0
c. 670
d. 2 (exactly)
2. Round these numbers as indicated.
a. 62.75 to the tenths place.
b. 0.090852 to 3 sf.
3. Use a calculator, then express your answer as a number with proper significant figures and units attached.
$4.701 \times 10^{3} \frac{\mathrm{~L}^{2} \cdot \mathrm{~g}}{\mathrm{~s}^{2}} \cdot 0.0401 \mathrm{~s}^{-2} \cdot \frac{23.060 \mathrm{~s}^{4}}{6.0 \times 10^{-5} \mathrm{~L}} \cdot($ an exact 4$)=$
4. Solve without a calculator. Write your answer in scientific notation with proper units and significant figures. $\left(56 \times 10^{-10} \mathrm{~cm}\right)-\left(49.6 \times 10^{-11} \mathrm{~cm}\right)=$

Lesson 3A: Rules for Significant Figures

Nearly all measurements have uncertainty. In science, we need to express

- how much uncertainty exists in measurements, and
- the uncertainty in calculations based on measurements.

The differentials studied in calculus provide one method to find a precise range of the uncertainty in calculations based on measurements, but differentials can be timeconsuming.
An easier method for expressing uncertainty is significant figures, abbreviated in these lessons as $s f$.

Other methods measure uncertainty more accurately, but significant figures provide a approximation of uncertainty that, compared to other methods, is easy to use in calculations. In first-year chemistry, significant figures in nearly all cases will be the method of choice to indicate an approximation of the uncertainty in measurements and calculations.

Pretest Answers: Your answers must match these exactly.
1a. 4
1b. 4
1c. 2
1d. Infinite sf
2a. 62.8
2b. 0.0909
3. $2.9 \times 10^{8} \mathrm{~L} \cdot \mathrm{~g}$
4. $5.1 \times 10^{-9} \mathrm{~cm}$

* * * * *

Significant Figures: Fundamentals

Use these rules when recording measurements and rounding calculations.

1. To Record a Measurement

Write all the digits you are sure of, plus the first digit that you must estimate in the measurement: the first doubtful digit (the first uncertain digit). Then stop.

When writing a measurement using significant figures, the last digit is the first doubtful digit. Round measurements to the highest place with doubt.

Example:

If a scale reads mass to the thousandths place, but under the conditions of the experiment the uncertainty in the measurement is ± 0.02 grams, we can write
$\mathbf{1 2 . 4 3 2} \mathbf{g} \pm 0.02 \mathrm{~g}$ using plus-minus notation to record uncertainty.
However, in a calculation, if we need to multiply or divide by that measured value, the math to include the \pm can be time-consuming. So, to convert the measurement to significant figures notation, we write

12.43 g

When using significant figures to indicate uncertainty, the last place written in a measurement is the first place with doubt. The \pm showed that the highest place with doubt is the hundredths place. To convert to significant figures, we round the recorded digits back to that place, then remove the \pm.

We convert the measurement to significant figures notation because in calculations, the math when using numbers like 12.43 follows familiar rules.

2. To Add and Subtract Using Significant Figures

a. First, add or subtract as you normally would.
b. Next, search the numbers for the doubtful digit in the highest place. The answer's doubtful digit must be in that place. Round the answer to that place.

Example: $23.1 \leqslant$

$$
+16 . \overline{0} 1
$$

$+\quad \underline{1.008}$
$40 . \underline{118}=40.1$
This answer must be rounded to 40.1 because the tenths place has doubt.
The tenths is the highest place with doubt among the numbers added.
Recall that the tenths place is higher than the hundredths place, which is higher than the thousandths place.
c. The logic: If you add a number with doubt in the tenths place to a number with doubt in the hundredths place, the answer has doubt in the tenths place.

A doubtful digit is significant, but numbers after it are not.
In a measurement, if the number in a given place is doubtful, numbers after that place are garbage. We allow one doubtful digit in answers, but no garbage.
d. Another way to state this rule: When adding or subtracting, round your answer back to the last full column on the right. This will be the first column of numbers, moving right to left (\leftarrow), with no blanks above.

The blank space after a doubtful digit indicates that we have no idea what that number is, so we cannot add a blank space and get a significant number in the answer in that column.
e. When adding or subtracting using a calculator: Underline the highest place with doubt in the numbers being added and subtracted. Round your calculator answer to that place.

Using a calculator, apply the rule to: Q. $43+1.00-2.008=$
A. $4 \underline{3}+1.00-2.008=4 \underline{1} .992$ on the calculator $=42$ in significant figures Among the numbers being added and subtracted, the highest doubt is in the one's place. In chemistry calculations, you must round your final answer to that place.
f. When adding and subtracting exponential notation (see Lesson 1B), first make the exponential terms the same, then apply the rules above to the significand of the answer.

This rule is in agreement with the general rule: when adding and subtracting, round to the highest place with doubt.

$$
\text { Example: } \begin{gathered}
2.8 \times 10^{-8} \\
-\frac{134 \times 10^{-11}}{}
\end{gathered}=-\frac{2 . \underline{8} \times 10^{-8}}{2 . \underline{666 \times 10^{-8}}}=\mathbf{2 . 7 \times 1 0 ^ { - 8 }}
$$

Summary: When adding or subtracting, round your final answer back to

- the highest place with doubt, which is also

When adding or subtracting in columns, this is also

- the leftmost place with doubt, which is also
- the last full column on the right, which is also
- the last column to the right without a blank space.

Practice A: First memorize the rules above. Then do the problems. When finished, check your answers at the end of the lesson.

1. Convert these from plus-minus notation to significant figures notation.
a. $\quad 65.316 \mathrm{~mL} \pm 0.05 \mathrm{~mL}$
b. $5.2 \mathrm{~cm} \pm 0.1 \mathrm{~cm}$
c. $1.8642 \mathrm{~km} \pm 0.22 \mathrm{~km}$
d. $16.8^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}$
2. Add and subtract, with our without calculator. Round your final answer to the proper number of significant figures.
$\begin{array}{ll}\text { a. } & 23.1\end{array}$
b. $2.016+32.18+64.5=$
c. $\quad 1.976 \times 10^{-13}$
$+23.1$
-7.3×10^{-14} $\underline{16.01}$
3. Use a calculator. Round your final answer to the proper number of significant figures.
a. $2.016+32.18+64.5=$
b. $16.00-4.034-1.008=$

3. To Count Significant Figures

When multiplying and dividing, we need to count the number of significant figures in a measurement. To count the number of $s f$, count the sure digits plus the doubtful digit. The doubtful digit is significant.
This rule means that for numbers in a measurement that do not include zeros, the count of $s f$ in a measurement is simply the number of digits shown.

Examples: 123 meters has $3 \mathrm{sf} . \quad 14.27$ grams has 4 sf .
In exponential notation, to find the number of $s f$, look only at the significand. The exponential term does not affect the number of significant figures.

Example: 2.99×10^{8} meters/second has 3 sf .

4. To Multiply and Divide

This is the rule we will use most often.
a. First multiply or divide as you normally would.
b. Then count the number of $s f$ in each of the numbers you are multiplying or dividing.
c. Your answer can have no more sf than the measurement with the least sf that you multiplied or divided by. Round the answer back to that number of $s f$.

Example: $3.1865 \mathrm{~cm} \times 8.8 \mathrm{~cm}=28.041=\mathbf{2 8} \mathrm{cm}^{2}$ (must round to 2 sf)

$$
\wedge 5 s f \quad \wedge 2 s f \quad \wedge 2 s f
$$

Summary: Multiplying and Dividing

If you multiply and/or divide a 10-sf number and a $9-s f$ number and a $2-s f$ number, you must round your answer to $2 s f$.
5. When Moving the Decimal: do not change the number of $s f$ in a significand.
Q. Convert 424.7×10^{-11} to scientific notation. A. 4.247×10^{-9}

6. In Calculations With Steps or Parts

The rules for $s f$ should be applied at the end of a calculation.
In problems that have several separate parts ($1 \mathrm{a}, 1 \mathrm{~b}$, etc.), and earlier answers are used for later parts, many instructors prefer that you carry one extra $s f$ until the end of a calculation, then round to proper sf at the final step. This method minimizes changes in the final doubtful digit due to rounding in the steps.

Practice B: First memorize the rules above. Then do the problems. When finished, check your answers at the end of the lesson.

1. Multiply and divide using a calculator. Write the first six digits of the calculator result, then write the final answer, with units, and with the proper number of $s f$.
a. $\quad 3.42 \mathrm{~cm}$ times $2.3 \mathrm{~cm}^{2}=$
b. $74.3 \mathrm{~L}^{2}$ divided by $12.4 \mathrm{~L}=$
2. Convert to scientific notation: a. $0.0060 \times 10^{-15} \quad$ b. $1,027 \times 10^{-1}$
3. a. $9.76573 \times 1.3=\mathrm{A}=$
b. $\mathrm{A} / 2.5=$

ANSWERS: Your answers must match these exactly.

Practice A

1a. $65.316 \mathrm{~mL} \pm 0.05 \mathrm{~mL} \quad 65.32 \mathrm{~mL}$ The highest place with doubt is hundredths.
When converting to $s f$, write all the sure digits. At the first place with doubt, round and stop.
1b. $5.2 \mathrm{~cm} \pm 0.1 \mathrm{~cm} \quad 5.2 \mathrm{~cm}$ Highest doubt is in tenth's place. Round to tenths.
1c. $1.8642 \mathrm{~km} \pm 0.22 \mathrm{~km} \quad 1.9 \mathrm{~km}$ The highest doubt is in tenth's place. Round to back tenths.
1d. $16.8^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C} \quad 17^{\circ} \mathrm{C} \quad$ Doubt in the one's place. Round back to the highest place with doubt.
2. (a)
(b) $2.016+32.18+64.5$
= $98.696=$
Must round to 98.7
62.21 Must round to 62.2
(c) $\quad 1.976 \times 10^{-13}$
$-\frac{0.73 \times 10^{-13}}{1.246 \times 10^{-13}}$
+23.1
Must round to 1.25×10^{-13}
3a. $2.016+32.18+64 . \underline{5}=98 . \underline{696}$ - Must round to 98.7
3b. $16.0 \underline{0}-4.034-1.008=10.9 \underline{5} 8$ Must round to 10.96

Practice B

1a. $\quad 7.9 \mathrm{~cm}^{3}$ (2 sf)
1b. $5.99 \mathrm{~L}(3 \mathrm{sf})$
2a. 6.0×10^{-18}
2b. 1.027×10^{2}

3a. 12.7 If this answer were not used in part b, the proper answer would be $13(2 \mathrm{sf})$, but since we need the answer in part b , it is often preferred to carry an extra $s f . \quad 3 \mathrm{~b} .12 .7 / 2.5=5.1$

* * * * *

Lesson 3B: Special Cases

When using significant figures to express uncertainty, there are special rules for zeros, and exact numbers, and rounding off a 5 .

1. Rounding. If the number beyond the place you are rounding to is
a. Less than 5: Drop it (round down). Example: 1.342 rounded to tenths $=1.3$
b. Greater than 5: Round up. Example: $1.7 \underline{4} 8=1.75$ (rounded to underlined place)
c. A 5 followed by any non-zero digits: Round up. Example: $1.0 \underline{2} 502=1.03$

2. Rounding a lone $\mathbf{5}$

A lone 5 is a 5 without following digits or a 5 followed by zeros.
To round off a lone 5 , some instructors prefer the simple "round 5 up" rule. Others prefer a slightly more precise "engineer's rule" described as follows.
a. If the number in front of a lone 5 being rounded off is even, round down by dropping the 5.

$$
\text { Example: } 1.45=1.4
$$

b. If the number in front of a lone 5 is odd, round it $u p$.

$$
\text { Example: } 1.3500=1.4
$$

A 5 followed by one or more zeros is rounded in the same way as a "lone 5 ."
Rounding a lone 5 , the rule is "even in front of 5 , leave it. Odd? Round up."
Why not always round 5 up? On a number line, a 5 is exactly halfway between 0 and 10. If you always round 5 up in a large number of calculations, your average will be slightly high. When sending a rover on a 300 million mile trajectory to Mars, if you calculate slightly high, you may miss your target by thousands of miles.
The "even leave it, odd up" rule rounds a lone 5 down half the time and up half the time. This keeps the average of rounding 5 in the middle, where it should be.
Rounding off a lone 5 or a 0.1500 is not a case that occurs often in calculations, but when it does, use the rounding rule preferred by the instructor in your course.

Practice A: Round to the underlined place. Check answers at the end of this lesson.

1. $0.002 \underline{12}$
2. $0.0 \underline{9} 94$
3. 20.0561
4. 23.25
5. 0.065500
6. $0.0 \underline{7} 50$
7. 2.659×10^{-3}
8. Zeros. When do zeros count as $s f$? There are four cases.
a. Leading zeros (zeros in front of all other digits) are never significant.

Example: 0.0006 has one $s f$. . (Zeros in front never count.)
b. Zeros embedded between other digits are always significant.

Example: 300.07 has 5 sf . (Zeros sandwiched by sf count.)
c. Zeros after all other digits as well as after the decimal point are significant.

Example: 565.0 has $4 s f$. You would not need to include that zero if it were not significant.
d. Zeros after all other digits but before the decimal are assumed to be not significant.

Example: 300 is assumed to have 1 sf , meaning "give or take at least 100. "
When a number is written as 300 , or 250 , it is not clear whether the zeros are significant. Many science textbooks address this problem by using this rule:

- "500 meters" means one sf, but
- " 500 . meters," with an unneeded decimal point added after a zero, means $3 s f$.

These modules will use that convention on occasion as well.
However, the best way to avoid ambiguity in the number of significant figures is to write numbers in scientific notation.

$$
4 \times 10^{2} \text { has one sf; } 4.00 \times 10^{2} \text { has } 3 \mathrm{sf} .
$$

In exponential notation, only the significand contains the significant figures.
In scientific notation, all of the digits in the significand are significant.

Why are zeros complicated? Zero has multiple uses in our numbering system.
In cases 3a and 3d above, the zeros are simply "indicating the place for the decimal." In that role, they are not significant as measurements. In the other two cases, the zeros represent numeric values. When the zero represents "a number between a 9 and a 1 in a measurement," it is significant.
4. Exact numbers. Measurements with no uncertainty have an infinite number of $s f$. Exact numbers do not add uncertainty to calculations.

- If you multiply a $3 s f$ number by an exact number, round your answer to 3 sf .

This rule means that exact numbers are ignored when deciding the sf in an calculated answer. In chemistry, we use this rule in situations including the following.
a. Numbers in definitions are exact.

Example: The relationship " $1 \mathrm{~km}=1000$ meters," is a definition of kilo- and not a measurement with uncertainty. Both the 1 and the 1000 are exact numbers. Multiplying or dividing by those exact numbers will not limit the number of $s f$ in your answer.
b. The number $\mathbf{1}$ in nearly all cases is exact.

Example: The conversion " $1 \mathrm{~km}=0.62$ miles" is a legitimate approximation, but it is not a definition (\equiv) and is not exactly correct. The $\mathbf{1}$ is therefore assumed to be exact, but the 0.62 has uncertainty and has $2 s f$.
c. Whole numbers (such as 2 or 6), if they are a measure of exact quantities (such as 2 people or 6 molecules), are also exact numbers with infinite $s f$.
d. Coefficients and subscripts in chemical formulas and equations are exact.

Example: $2 \mathrm{H}_{2}+\mathbf{1} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ All of those numbers are exact.
You will be reminded about these exact-number cases as we encounter them. For now, simply remember that exact numbers

- have infinite $s f$, and
- do not limit the sf in an answer.

Practice B

Write the number of $s f$ in these.

1. 0.0075
2. 600.3
3. 178.40
4. 4640 .
5. 800
6. 2.06×10^{-9}
7. 0.060×10^{3}
8. 0.02090×10^{5}
9. 3 (exact)

ANSWERS

Practice A

$\begin{array}{lll}\text { 1. } 0.002 \underline{1} 2 \text { rounds to } 0.0021 & \text { 2. } 0.0 \underline{9} 94 \text { rounds to } 0.1 \underline{0} & \text { 3. } 20.0561 \text { rounds to } 20.06\end{array}$
4. 23.25 rounds to 23.2 . by the engineer's "lone 5 : even, leave it" rule, or $\mathbf{2 3 . 3}$ by the "round lone 5 up" rule.
5. 0.065500 rounds to 0.066 by both rules. Eng: the lone 5 to be rounded follows an odd 5. Round "odd up."
6. 0.0750 rounds to 0.08 by both rules. Engineers: When rounding a lone 5 , use "even leave it, odd up."
7. 2.659×10^{-3} rounds to 2.7×10^{-3} By all rules: when rounding a 5 followed by non-zeros, round up.

Practice B

1. 0.0075 has $\mathbf{2} s f$. (Zeros in front never count.) $\quad 2.600 .3$ has $\mathbf{4} s f$. (Sandwiched zeros count.)
2. 178.40 has $\mathbf{5} s$. (Zeros after the decimal and after all the numbers count.)
3. 4640 . has $\mathbf{4} s f$. (Zeros after the numbers but before a written decimal count.)
4. 800 has 1 sf . (Zeros after all numbers but before the decimal place usually don't count.)
5. 2.06×10^{-9} has 3 sf . (The significand in front contains and determines the sf .)
6. 0.060×10^{3} has 2 sf . (The significand contains the $s f$. Leading zeros never count.)
7. 0.02090×10^{5} has 4 sf . (The significand contains the $s f$. Leading zeros never count. The rest here do.)
8. 3 (exact) Infinite sf. Exact numbers have no uncertainty and infinite sf.

Lesson 3C: Summary and Practice

First, memorize the rules.

1. When expressing a measuring in significant figures, include the first doubtful digit, then stop. Round measurements to the doubtful digit's place.
2. When counting significant figures, include the doubtful digit.
3. When adding and subtracting $s f$,
a. find the measurement that has doubt in the highest place.
b. Round your answer to that place.
4. When multiplying and dividing,
a. find the number in the calculation that has the least number of $s f$.
b. Round your answer to that number of $s f$.
5. In exponential notation, the $s f$ are in the significand.
6. When moving a decimal, keep the same number of $s f$ in the significand.
7. When solving a problem with parts, carry an extra $s f$ until the final step.
8. To round off a lone 5 , use the rule preferred by your instructor. Either always round up, or use "even in front of 5 , leave it. Odd? Round up."
9. For zeros,
a. zeros in front of all other numbers are never significant.
b. Sandwiched zeros are always significant.
c. Zeros after the other numbers and after the decimal are significant.
d. Zeros after all numbers but before the decimal place are not significant, but if an unneeded decimal point is shown after a zero, that zero is significant.
10. Exact numbers have infinite $s f$.

For reinforcement, make the flashcards you need using the method in Lesson 2C.
Front-side (with notch at top right): Back Side -- Answers

Writing measurements in $s f$, stop where?	At the first doubtful digit
Counting the number of sf, which digits count?	All the sure, plus the doubfful digit
Adding and subtracting, round to where?	The column with doubt in highest place = last full column
Multiplying and dividing, round how?	Least \# of sf in calculation = \# sf allowed
In counting $s f$, zeros in front	Never count
Sandwiched zeros	count
Zeros after numbers and after decimal	count
Zeros after numbers but before decimal	Probably don't count

Zeros followed by un-needed decimal	count
Exact numbers have	Infinite sf

Run the flashcards until perfect, then start the problems below.

Practice: Try every other problem on day 1. Try the rest on day 2 of your practice.

1. Write the number of $s f$ in these.
a. 107.42
b. 10.04
c. 13.40
d. 0.00640
e. 0.043×10^{-4}
f. 1590.0
g. 320×10^{9}
h. 14 (exact)
i. 2500
j. 4200 .
2. Round to the place indicated.
a. $\quad 5.15 \mathrm{~cm}$ (tenths place)
b. 31.84 meters (3 sf)
c. $\quad 0.819 \mathrm{~mL}$ (hundredths place)
d. $0.0635 \mathrm{~cm}^{2}(2 \mathrm{sf})$
e. $\quad 0.04070 \mathrm{~g}(2 \mathrm{sf})$
f. 6.255 cm (tenths place)
3. Addition and Subtraction: Round answers to proper $s f$.
a. 1.008
$+1.008$
b. $\quad 17.65$ -9.7
c. $39.1+124.0+14.05=$
$\underline{32.00}$
4. Multiplication and Division: Write the first 6 digits given by your calculator. Then write the answer with the proper number of $s f$ and proper units.
a. $\quad 13.8612 \mathrm{~cm} \times 2.02 \mathrm{~cm}=$
b. 4.4 meters $\times 8.312$ meters $^{2}=$
c. $2.03 \mathrm{~cm}^{2} / 1.2 \mathrm{~cm}=$
d. $0.5223 \mathrm{~cm}^{3} / 0.040 \mathrm{~cm}=$
5. Use a calculator. Answer in scientific notation with proper $s f$.
a. $\left(2.25 \times 10^{-2}\right)\left(6.0 \times 10^{23}\right)$
b. $\left(6.022 \times 10^{23}\right) /\left(1.50 \times 10^{-2}\right)$
6. Convert these from \pm to $s f$ notation.
a. $2.0646 \mathrm{~m} \pm 0.050 \mathrm{~m}$
b. $5.04 \mathrm{~nm} \pm 0.12 \mathrm{~nm}$
c. $12.675 \mathrm{~g} \pm 0.20 \mathrm{~g}$
d. $24.81^{\circ} \mathrm{C} \pm 1.0^{\circ} \mathrm{C}$

Answer 7 and 8 in scientific notation, with proper units and $s f$:
7. $5.60 \times 10^{-2} \frac{\mathrm{~L}^{2} \cdot \mathrm{~g}}{\mathrm{~s}} \cdot 0.090 \mathrm{~s}^{-3} \cdot \frac{4.00 \mathrm{~s}^{4}}{6.02 \times 10^{-5} \mathrm{~L}^{3}} \cdot($ an exact 2$)=$
8. Without a calculator:
$\left(-50.0 \times 10^{-14} \mathrm{~g}\right)-\left(-49.6 \times 10^{-12} \mathrm{~g}\right)=$
9. For additional practice, solve the problems in the pretest at the beginning of this module.

ANSWERS

1. a. 107.425 sf (Sandwiched zeros count.) \quad b. $10.04 \mathbf{4}$ (Sandwiched zeros count.)
c. $13.40 \quad 4$ (Zeros after numbers and after the decimal count.)
d. 0.006403 (Zeros in front never count, but zeros both after \#s and after the decimal count.)
e. $0.043 \times 10^{-4} 2$ (Zeros in front never count. The significand contains and determines the $s f$.)
f. $1590.0 \quad 5$ (The last 0 counts since after \#s and after decimal. This sandwiches the first 0 .)
g. $320 \times 10^{9} \quad 2$? (Zeros after numbers but before the decimal usually don't count.)
h. 14 (exact) Infinite (Exact numbers have infinite $s f$.)
i. 25002 (Zeros at the end before the decimal usually don't count.)
j. 4200. 4 (The decimal at the end means the 0 before it counts, and first 0 is sandwiched.)
2. a. 5.15 cm (tenths place) 5.2 cm (Round up by both lone 5 rules. Eng: 1 is odd, round 5 up.)
b. 31.84 meters (3 sf) 31.8 meters (3rd digit is last digit: rounding off a 4, round down.)
c. 0.819 mL (hundredths place) $\mathbf{0 . 8 2 \mathrm { mL }}$ (9 rounds up.)
d. $0.0635 \mathrm{~cm}^{2}(2 \mathrm{sf}) \quad 0.064 \mathrm{~cm}^{2}$ (Leading zeros never count.. Round to $2^{\text {nd }} s f$, up by both rules.)
e $\quad 0.04070 \mathrm{~g}(2 \mathrm{sf}) \quad 0.041$ grams (Zeros in front never count.)
f. 6.255 cm (tenths place) 6.3 cm (Rounding a 5 followed by other digits, always round up.)
3. a.

$$
\begin{array}{r}
1.008 \\
+1.008 \\
\underline{32.00} \\
\hline 34.016=34.02
\end{array}
$$

b. $\quad 17.65$
$\frac{-9.7}{7.95}=8.0$ (5 up or $9=$ odd up)
C. $\quad 39.1$

+ 124.0
14.05 $177.15=177.2$

4. For help with unit math, see Lesson 2B. For help with exponential math, see Module 1.
a. $\quad 13.8612 \mathrm{~cm} \times 2.02 \mathrm{~cm}=27.9996=28.0 \mathrm{~cm}^{2}(\mathbf{3 ~ s f})$
b. 4.4 meters $\times 8.312$ meters $^{2}=36.5728=37$ meter 3 (2 sf, 5 plus other digits, always round up)
c. $2.03 \mathrm{~cm}^{2} / 1.2 \mathrm{~cm}=1.69166=1.7 \mathrm{~cm} \quad(2 \mathrm{sf})$
d. $\quad 0.5223 \mathrm{~cm}^{3} / 0.040 \mathrm{~cm}=13.0575=13 \mathrm{~cm}^{2} \quad(2 \mathrm{sf})$
5. a. $\left(2.25 \times 10^{-2}\right)\left(6.0 \times 10^{23}\right)=13.5 \times 10^{21}=1.4 \times 10^{22}$ in scientific notation (2 sf)
b. $\quad\left(6.022 \times 10^{23}\right) /\left(1.50 \times 10^{-2}\right)=4.01 \times 10^{25}(3 \mathrm{sf})$
6. a. $2.0646 \mathrm{~m} \pm 0.050 \mathrm{~m} 2.06 \mathrm{~m}$ The highest doubt is in the hundredth's place. Round to that place.
b. $5.04 \mathrm{~nm} \pm 0.12 \mathrm{~nm} \quad 5.0 \mathrm{~nm}$ The highest doubt is in the tenth's place. Round to that place.
c. $12.675 \mathrm{~g} \pm 0.20 \mathrm{~g}$
12.7 g The highest doubt is in the tenth's place. Round to that place.
d. $24.81^{\circ} \mathrm{C} \pm 1.0^{\circ} \mathrm{C} \quad 25^{\circ} \mathrm{C} \quad$ The highest doubt is in the one's place. Round to that place.
7. $=\frac{5.60 \cdot 0.090 \cdot 4.00 \cdot(\text { an exact } 2)}{6.02} \cdot \frac{10^{-2}}{10^{-5}} \cdot \frac{\mathrm{~L}^{2} \cdot \mathrm{~g} \cdot \mathrm{~s}^{-3} \cdot \mathrm{~s}^{4}}{\mathrm{~s} \cdot \mathrm{~L}^{3}}=0.67 \times 10^{3}=6.7 \times 10^{2} \frac{\mathrm{~g}}{\mathrm{~L}}$

The 0.090 limits the answer to $2 s f$. Exact numbers do not affect $s f$. For unit cancellation, see Lesson 2D. Group and handle numbers, exponentials, and units separately.
8. $\left(-50.0 \times 10^{-14} \mathrm{~g}\right)-\left(-49.6 \times 10^{-12} \mathrm{~g}\right)=+49.6 \times 10^{-12} \mathrm{~g}$ $\frac{-0.500 \times 10^{-12} \mathrm{~g}}{49.1 \times 10^{-12} \mathrm{~g}}=4.91 \times 10^{-11} \mathrm{~g}$

Numbers added or subtracted must have same exponents and units (see Lessons 1B, 2B). Adjusting to the highest exponent in the series (-12 is higher than -14) often helps with sf. In moving the decimal point, do not change the number of sf. Apply the rules for sf rounding at the end of a calculation.

Lesson 3D: The Atoms - Part 2

To continue to learn the atoms encountered most often, your assignment is:

- For the $\mathbf{2 0}$ atoms below, memorize the name, symbol, and position in this table. For each atom, given its symbol or name, be able to write the other.
- Be able to fill in an empty table of this shape with those names and symbols in their proper places. (The "atomic numbers" shown above each symbol are optional.)

Periodic Table

Module 4 - Conversion Factors

Prerequisites: Module 4 requires knowledge of exponential math and metric fundamentals in Lessons 1A, 1B, 2A, 2B, 3A and 3B. The other lessons in Modules 1-3 will be helpful, but not essential, for Module 4.
Pretests: If the use of conversion factors is easy review, try the last two problems in each lesson. If you get those right, skip the lesson. If they are not easy, complete the lesson.

Lesson 4A: Conversion Factor Basics

Conversion factors can be used to change from one unit of measure to another, or to find equivalent measurements of substances or processes. A conversion factor is a ratio (a fraction) made from two measured quantities that are equal or equivalent in a problem. A conversion factor is a fraction that equals one.

Conversion factors have a value of unity (1) because they are made from equalities. For any fraction in which the top and bottom are equal, its value is one.

$$
\begin{aligned}
& \text { For example: } \quad \frac{7}{7}=\mathbf{1} \\
& \text { Or, since } 1 \text { milliliter }=10^{-3} \text { liters ; } \frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}=\mathbf{1} \quad \text { and } \quad \frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}=\mathbf{1}
\end{aligned}
$$

These last two fractions are typical conversion factors. Any fraction that equals one rightside up will also equal one up-side down. Any conversion factor can be inverted (flipped over) for use if necessary, and it will still equal one.

When converting between liters and milliliters, all of these are legal conversion factors:

$$
\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}} \quad \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \quad \frac{10^{3} \mathrm{~mL}}{1 \mathrm{~L}} \quad \frac{3,000 \mathrm{~mL}}{3 \mathrm{~L}} \quad \text { All are equal to one. }
$$

All of those fractions are mathematically equivalent because they all represent the same ratio. Upside down, each fraction is also legitimate conversion factor, because the top and bottom are equal, and its value is one.

In solving calculations, the conversions that are preferred if available are those that are made from fundamental definitions, such as "milli- $=10^{-3}$." However, each of the four forms above is legal to use in converting between milliliters and liters, and either of the first three forms may be encountered during calculations solved in science textbooks.

If a series of terms are equal, any two of those terms can be used as a conversion factor.
Example: Since 1 meter $=10$ decimeters $=100$ centimeters $=1000$ millimeters
Then each of the following (and others) is a legitimate conversion factor:

$$
\frac{1000 \mathrm{~mm}}{1 \mathrm{~m}} \quad \frac{1 \mathrm{~mm}}{10^{-3} \mathrm{~m}} \quad \frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}} \quad \frac{100 \mathrm{~cm}}{10 \mathrm{dm}} \quad \frac{10 \mathrm{~cm}}{1 \mathrm{dm}}
$$

Let's try an example of conversion-factor math. Try the following problem. Show your work on this page or in your problem notebook, then check your answer below.

Multiply $\quad 7.5$ kilometers $\frac{10^{3} \text { meters }}{1 \text { kilometer }}=$

* * * * * (* * * mean: cover below, write your answer, then check below.)

Answer

$$
7.5 \text { kilometers } \cdot \frac{10^{3} \text { meters }}{1 \text { kilometer }}=\frac{\left(7.5 \cdot 10^{3}\right)}{1} \text { meters }=7.5 \times 10^{3} \text { meters }
$$

When these terms are multiplied, the "like units" on the top and bottom cancel, leaving meters as the unit on top.

Since the conversion factor multiplies the given quantity by one, the answer equals the given amount that we started with. This answer means that 7,500 meters is the same as 7.5 km .

Multiplying a given quantity by a conversion factor changes the units that measure the quantity but does not change its amount. The result is what we started with, measured in different units.

This process answers a question posed in many science problems: From the units we are given, how can we obtain the units we want?
Our method of solving calculations will focus on finding equal or equivalent quantities. Using those equalities, we will construct conversion factors to solve problems.

Summary

- Conversion factors are made from two measured quantities that are either defined as equal or are equivalent or equal in the problem.
- Conversion factors have a value of one, because the top and bottom terms are equal or equivalent.
- Any equality can be made into a conversion (a fraction or ratio) equal to one.
- When the units are set up to cancel correctly, given numbers and units multiplied by conversions will result the WANTED numbers and units.
\rightarrow Units tell you where to write the numbers to solve a calculation correctly.

To check the metric conversion factors encountered most often, use these rules.
Since conversions must be equal on the top and bottom, the equalities that define the metric prefixes can be used to write and check conversions.

- 1 milliunit or $1 \mathbf{m}$ (unit abbreviation) must be above or below $\mathbf{1 0}^{-3}$ units ;
- 1 centi- or 1 c - must be above or below $\mathbf{1 0}^{-2}$;
- 1 kilo- or 1 k - must be above or below $10^{\mathbf{3}}$.

Practice: Try every other lettered problem. Check your answers frequently. If you miss one on a section, try a few more. Answers are on the next page.

1. Multiply the conversion factors. Cancel units that cancel, then group the numbers and do the math. Write the answer number and unit in scientific notation.
a. 225 centigrams $\cdot \frac{10^{-2} \text { gram }}{1 \text { centigram }} \cdot \frac{1 \text { kilogram }}{10^{3} \text { grams }}=$
b. 1.5 hours $\cdot \frac{60 \text { minutes }}{1 \text { hour }} \cdot \frac{60 \text { seconds }}{1 \text { minute }}=$
2. To be legal, the top and bottom of conversion factors must be equal. Label these conversion factors as legal or illegal.
a. $\frac{1000 \mathrm{~mL}}{1 \text { liter }}$
b. $\frac{1000 \mathrm{~L}}{1 \mathrm{~mL}}$
c. $\frac{1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}}$
d. $\frac{10^{-2} \text { volt }}{1 \text { centivolt }}$
e. 1 mL 1 cc
f. $\frac{10^{3} \mathrm{~cm}^{3}}{1 \mathrm{~L}}$
g. $\frac{10^{3} \text { kilowatts }}{1 \text { watt }}$
h. 1 kilocalorie 10^{3} calories
3. Place a 1 in front of the unit with a prefix, then complete the conversion factor.
a. \qquad kilograms
b. \qquad
c. \qquad
4. Add numbers to make legal conversion factors, with at least one of the numbers in each conversion factor being a 1 .
a. \qquad
b. \qquad
c.

5. Finish these.
a. $27 \mathrm{~A} \cdot \frac{2 \mathrm{~T}}{8 \mathrm{~A}} \cdot \frac{4 \mathrm{~W}}{3 \mathrm{~T}}=$
b. 2.5 meters $-1 \mathrm{~cm}=$

$$
10^{-2} \text { meter }
$$

c. $\frac{95 \mathrm{~km}}{\text { hour }} \cdot \frac{0.625 \text { miles }}{1 \mathrm{~km}}=$
d. 27 meters - 60 s - 1 kilometer $=$ seconds $1 \mathrm{~min} . \quad 10^{3}$ meters

ANSWERS

1 a. 225 centigrams $\cdot \frac{10^{-2} \text { gram }}{1 \text { centigram }} \cdot \frac{1 \text { kilogram }}{10^{3} \text {. }}=\frac{225 \times 10^{-2} \times 1}{1 \times 10^{3}} \mathrm{~kg}=2.25 \times 10^{-3} \mathrm{~kg}$
The answer means that $2.25 \times 10^{-3} \mathrm{~kg}$ is equal to 225 cg .
b. 1.5 hours $\cdot \frac{60 \text { minutes }}{1 \text { hour }} \cdot \frac{60 \text { seconds }}{1 \text { minute }}=\frac{1.5 \times 60 \times 60}{1} \mathrm{~s}=5,400 \mathrm{~s}$ or $5.4 \times 10^{3} \mathrm{~s}$

Recall that \mathbf{s} is the abbreviation for seconds. This answer means that 1.5 hours is equal to $5,400 \mathrm{~s}$.
2.
a. 1000 mL
1 liter
b. $\frac{1000 \mathrm{~L}}{1 \mathrm{~mL}}$
c. $\frac{1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}}$
d. $\frac{10^{-2} \text { volt }}{1 \text { centivolt }}$
Legal IF liquid water
Legal
Illegal
Legal
e. 1 mL

1 cc
Legal

f. $\frac{10^{3} \mathrm{~cm}^{3}}{1 \mathrm{~L}}$

1 L
Legal

g. $\frac{10^{3} \text { kilowatts }}{1 \text { watt }}$
h. 1 kilocalorie_
10^{3} calories
Legal
3. a. $\frac{10^{3} \text { grams }}{1 \text { kilogram }}$
b. $\quad 10^{-9}$ mole
c. 1 picocurie 10^{-12} curie
4. a. 1 centijoule or 100 centijoules 10^{-2} joules
1 joule
b. $\frac{1 \text { liter }}{1000 \mathrm{cc} .}$ or $\frac{10^{-3} \text { liters }}{1 \text { cubic } \mathrm{cm}}$
c. $\frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}}$

Either fixed decimal numbers (such as 100) or equivalent exponentials $\left(10^{2}\right)$ may be used in conversions.
5. a. $27 \mathrm{~A} \cdot \frac{2 \mathrm{~T}}{8 \mathrm{~A}} \cdot \frac{4 \mathrm{~W}}{3 \mathrm{~T}}=27 \mathrm{~A} \cdot \frac{2 \mathrm{~F}}{8 \mathrm{~A}} \cdot \frac{4 \mathrm{~W}}{3 \mp}=\frac{27 \cdot 2 \cdot 4}{8 \cdot 3} \cdot \mathrm{~W}=9 \mathrm{~W}$
b. 2.5 meters $\cdot \frac{1 \mathrm{~cm}}{10^{-2} \text { meter }}=2.5 \times 10^{2} \mathrm{~cm}=250 \mathrm{~cm}$
c. $\frac{95 \mathrm{~km}}{\text { hour }} \cdot \frac{0.625 \text { miles }}{1 \mathrm{~km}}=\frac{95 \cdot 0.625}{1} \frac{\mathrm{mi}}{\mathrm{hr}}=59 \frac{\mathrm{miles}}{\text { hour }}$
d. $\underset{\text { seconds }}{27 \text { meters }} \cdot \frac{60 \text { secends }}{1 \mathrm{~min}} \cdot \frac{1 \text { kilometer }}{10^{3} \text { meters }}=\frac{27 \cdot 60}{10^{3}} \frac{\mathrm{~km}}{\mathrm{~min}}=1.6 \frac{\mathrm{~km}}{\mathrm{~min}}$

Lesson 4B: Single Step Conversions

In the previous lesson, conversion factors were supplied. In this lesson, you will learn to make your own conversion factors to solve problems. Let's learn the method with a simple example.
Q. How many years is 925 days?

In your notebook, write an answer to each step below.

Steps for Solving with Conversion Factors

1. Begin by writing a question mark (?) and then the unit you are looking for in the problem, the answer unit.
2. Next write an equal sign. It means, "OK, that part of the problem is done. From here on, leave the answer unit alone." You don't cancel the answer unit, and you don't multiply by it.
3. After the $=$ sign, write the number and unit you are given (the known quantity).

* * * * *

At this point, in your notebook should be ? years = 925 days
4. Next, write a • and a line \qquad for a conversion factor to multiply by.
5. A key step: write the unit of the given quantity in the denominator (on the bottom) of the conversion factor. Leave room for a number in front.
Do not put the given number in the conversion factor -- just the given unit.

$$
? \text { years }=925 \text { days } \bullet \longrightarrow \text { days }
$$

This step puts the given unit where it must be to cancel and tells you one part of what the next conversion must include.
6. Next, write the answer unit on the top of the conversion factor.

$$
\text { ? years }=925 \text { days } \bullet \ldots \frac{\text { year }}{\text { days }}
$$

7. Add numbers that make the numerator and denominator of the conversion factor equal. In a legal conversion factor, the top and bottom quantities must be equal or equivalent.
8. Cancel the units that you set up to cancel.
9. If the unit on the right side after cancellation is the answer unit, stop adding conversions. Write an = sign. Multiply the given quantity by the conversion factor. Write the number and the un-canceled unit. Done!

Finish the above steps, then check your answer below.

* * * * \star
$?$ years $=925$ days $\cdot \frac{1 \text { year }}{365 \text { days }}=\frac{925 \text { years }}{365}=2.53$ years
(SF: $\mathbf{1}$ is exact, 925 has $3 s f, 365$ has $3 s f(1$ yr. $=365.24$ days is more precise), round to $3 s f$.)
You may need to look back at the above steps, but you should not need to memorize them. By doing the following problems, you will quickly learn what you need to know.

Practice: After each numbered problem, check your answers at the end of this lesson. Look back at the steps if needed.

For the problems in this practice section, write conversions in which one of the numbers (in the numerator or the denominator) is a 1 .

If these are easy, do every third letter. If you miss a few, do a few more.

1. Add numbers to make these conversion factors legal, cancel the units that cancel, multiply the given by the conversion, and write your answer.
a. \quad days $=96$ hours $\frac{\text { day }}{24 \text { hours }}=$
b. $? \mathrm{~mL}=3.50$ liters $\frac{1 \mathrm{~mL}}{\text { liter }}=$
2. To start these, put the unit of the given quantity where it will cancel. Then finish the conversion factor, do the math, and write your answer with its unit.
a. ? seconds $=0.25$ minutes $\frac{\mathrm{sec} .}{1}=$
b. ? kilograms $=250$ grams $\cdot \frac{\text { kilogram }}{10^{3}}=$
c. $\boldsymbol{?}$ days $=2.73$ years $=$
d. ? years = 200. days $1=$
3. You should not need to memorize the written rules for arranging conversion factors, however, it is helpful to use this "single unit starting template."

When solving for single units, begin with
? unit WANTED $=$ number and UNIT given • \qquad
UNIT given

The template emphasizes that your first conversion factor puts the given unit (but not the given number) where it will cancel.
a. ? months $=5.0$ years \bullet \qquad =
b. ? liters $=350 \mathrm{~mL}$ •
c. ? minutes $=5.5$ hours
4. Use the starting template to find how many hours equal 390 minutes.
?
5. ? milligrams $=0.85 \mathrm{~kg} \bullet$ \square
\qquad $=$ gram

ANSWERS

Some but not all unit cancellations are shown. For your answer to be correct, it must include its unit.
Your conversions may be in different formats, such as 1 meter $=100 \mathrm{~cm}$ or $1 \mathrm{~cm}=10^{-2}$ meters, as long as the top and bottom are equal and the answer is the same as below.

1. a. ? days $=96$ hours $\cdot \frac{1 \text { day }}{24 \text { hours }}=\frac{96}{24}$ days $=4.0$ days
b. $? \mathrm{~mL}=3.50$ liters $\cdot \frac{1 \mathrm{~mL}}{10^{-3} \text { liter }}=3.50 \cdot 10^{3} \mathrm{~mL}=3.50 \times 10^{3} \mathrm{~mL}$
(SF: 3.50 has 3 sf , prefix definitions are exact with infinite sf, answer is rounded to 3 sf)
2. Your conversions may be different (for example, you may use $1,000 \mathrm{~mL}=1 \mathrm{~L}$ or $1 \mathrm{~mL}=10^{-3} \mathrm{~L}$), but you must get the same answer.
a. ? seconds $=0.25$ minutes $\cdot \frac{60 \mathrm{sec} .}{1 \text { minute }}=0.25 \cdot 60 \mathrm{sec} .=15 \mathrm{~s}$
(SF: 0.25 has $2 \mathrm{sf}, 1 \mathrm{~min}=60 \mathrm{sec}$. is a definition with infinite sf, answer is rounded to 2 sf)
b. ? kilograms $=250$ grams $\cdot \frac{1 \text { kilogram }}{10^{3} \text { grams }}=\frac{250}{10^{3}} \mathrm{~kg}=0.25 \mathrm{~kg}$
c. $\boldsymbol{?}$ days $=2.73$ years $\frac{365 \text { days }}{1 \text { year }}=2.73 \cdot 365$ days $=996$ days
d. ? years $=200$. days $\frac{1 \text { year }}{365 \text { days }}=\frac{200}{365}$ years $=0.548$ years
3. a. ? months $=5.0$ years $\quad 12$ months $=60$ months 1 year
(SF: 5.0 has $2 \mathrm{sf}, 12 \mathrm{mo} .=1 \mathrm{yr}$. is a definition with infinite $s f$, round to 2 sf , the 60 . decimal means 2 sf)
b. ? liters $=350 \mathrm{~mL} \cdot \frac{10^{-3} \text { liter }}{1 \mathrm{~mL}}=350 \times 10^{-3}$ liters $=0.35 \mathrm{~L}$ ($\mathrm{m}-=$ milli- $=10^{-3}$. SF: 350 has $2 s f$, prefix definitions are exact with infinite sf, round to 2 sf)
c. $\boldsymbol{?}$ minutes $=5.5$ hours $\cdot \frac{60 \text { minutes }}{1 \text { hour }}=330$ minutes
4. ? hours $=390$ minutes $\frac{1 \text { hour }}{60 \text { minutes }}=6.5$ hours
5. ? milligrams $=0.85 \mathrm{~kg} \cdot \frac{10^{3} \text { gram }}{1 \mathrm{~kg}} \cdot \frac{1 \mathrm{mg}}{10^{-3} \text { gram }}=0.85 \times 10^{6} \mathrm{mg}=8.5 \times 10^{5} \mathrm{mg}$

Lesson 4C: Multi-Step Conversions

In Problem 5 at the end of the previous lesson, we did not know a direct conversion from kilograms to milligrams. However, we knew a conversion from kilograms to grams, and another from grams to milligrams.

In most problems, you will not know a single conversion from the given to wanted unit, but there will be known conversions that you can chain together to solve.

Try this two-step conversion, based on Problem 5 above. Answer in scientific notation.
Q. ? milliseconds $=0.25$ minutes

* \star * $\star \star$

A. ? milliseconds $=0.25$ minutes $\cdot \frac{\mathbf{6 0 ~ \mathbf { s }}}{\mathbf{1} \mathbf{~ m i n .}} \cdot \frac{\mathbf{1} \mathbf{~ m s}}{\mathbf{1 0}^{-\mathbf{3} \mathbf{~ s}}}=15 \times 10^{3} \mathrm{~ms}=\mathbf{1 . 5 \times 1 \mathbf { 1 0 } ^ { \mathbf { 4 } } \mathbf { ~ m s }}$

The 0.25 has two $s f$, both conversions are exact definitions that do not affect the significant figures in the answer, so the answer is written with two $s f$.

The rules are, when

Solving With Multiple Conversions

- If the unit on the right after you cancel units is not the answer unit, get rid of it. Write it in the next conversion factor where it will cancel.
- Finish the next conversion with a known conversion, one that either includes the answer unit, or gets you closer to the answer unit.
- In making conversions, set up units to cancel, but add numbers that make legal conversions.

Practice

Convert your final answers to scientific notation.
These are in pairs. If Part A is easy, go to Part A of the next question. If you need help with Part A, do Part B for more practice.

1. a. ? gigagrams $=760$ milligrams \bullet \qquad
\qquad $=$
b. $\quad ? \mathrm{cg}=4.2 \mathrm{~kg} \bullet$ \qquad - \qquad $=$
g
2. a. ? years $=2.63 \times 10^{4}$ hours • \qquad - \qquad $=$
b. ? seconds $=1.00$ days • \qquad hr • \qquad - \qquad $=$
3. a. ? $\mu \mathrm{g} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}=1.5 \mathrm{cc} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ • \qquad $\mathrm{g} \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ • \qquad $=$
b. $\quad ? \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}_{(\text {liquid })}=5.5$ liter $\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ • \qquad - \qquad - \qquad $=$

ANSWERS

For visibility, not all cancellations are shown, but cancellations should be marked on your paper.
Your conversions may be different (for example, you may use $1,000 \mathrm{~mL}=1 \mathrm{~L}$ or $1 \mathrm{~mL}=10^{-3} \mathrm{~L}$), but you must get the same answer.
1a. ? gigagrams $=760$ milligrams $\cdot \frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}} \cdot \frac{1 \mathrm{Gg}_{-}}{10^{9} \mathrm{~g}}=760 \times 10^{-12} \mathrm{Gg}=7.6 \times 10^{-10} \mathrm{Gg}$
b. $? \mathrm{cg}=4.2 \mathrm{~kg} \cdot \frac{10^{3} \mathrm{~g}}{1 \mathrm{~kg}} \cdot \frac{1 \mathrm{cg}}{10^{-2} \mathrm{~g}}=4.2 \times 10^{5} \mathrm{cg}$

2a. ? years $=2.63 \times 10^{4}$ hours $\frac{1 \text { day }}{24 \mathrm{hr} .} \cdot \frac{1 \mathrm{yr}}{365 \text { days }}=\frac{2.63 \times 10^{4}}{24 \cdot 365}=3.00 \times 10^{0}$ years
b. $?$ seconds $=1.00$ days $\cdot \frac{24 \mathrm{hr}}{1 \text { day }} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}} \cdot \frac{60 \mathrm{~s}}{1 \mathrm{~min}}=8.64 \times 10^{4} \mathrm{~s}$

Lesson 4D: English/Metric Conversions

Using Familiar Conversions

All of the conversions between units that we have used so far have had the number $\mathbf{1}$ on either the top or the bottom, but a one is not required in a legal conversion.
Both " 1 kilometer $=1,000$ meters" and " 3 kilometers $=3,000$ meters" are true equalities, and both equalities could be used to make legal conversion factors. In most cases, however, conversions with a 1 are preferred.

Why? We want conversions to be familiar, so that we can write them automatically and quickly check that they are correct. Definitions are usually based on one of one component, such as " $1 \mathrm{~km}=10^{3}$ meters." Definitions are the most familiar equalities, and are therefore preferred in conversions.
However, some conversions may be familiar even if they do not include a 1. For example, many cans of soft drinks are labeled " 12.0 fluid ounces (355 mL)." This supplies an equality for English-to-metric volume units: 12.0 fluid ounces $=355 \mathrm{~mL}$. That is a legal conversion and, because its numbers and units are seen often, it is a good conversion to use because it is easy to remember and check.

Bridge Conversions

Science problems often involve a key bridge conversion between one unit system, quantity, or substance, and another.

For example, a bridge conversion between metric and English-system distance units is

2.54 centimeters $\equiv 1$ inch

In countries that use English units, this is now the exact definition of an inch. Using this equality, we can convert between metric and English measurements of distance.

Any metric-English distance equality can be used to convert between distance measurements in the two systems. Another metric-English conversion for distance that is frequently used (but not exact) is 0.61 mile $=1 \mathrm{~km}$. (When determining the significant figures, for conversions based on equalities that are not exact definitions, assume that an integer $\mathbf{1}$ is exact, but the other number is precise only to the number of $s f$ shown.)
In problems that require bridge conversions, our strategy to will be to "head for the bridge," to begin by converting to one of the two units in the bridge conversion.

When a problem needs a bridge conversion, use these steps.

1) First convert the given unit to the unit in the bridge conversion that is in the same system as the given unit.
2) Next, multiply by the bridge conversion. The bridge conversion crosses over from the given system to the WANTED system.
3) Multiply by other conversions in the WANTED system to get the answer unit WANTED.

Conversions between the metric and English systems provide a way to practice the bridgeconversion methods that we will use in chemical reaction calculations. Add these English distance-unit definitions to your list of memorized conversions.

$$
12 \text { inches } \equiv 1 \text { foot } \quad 3 \text { feet } \equiv 1 \text { yard } \quad 5,280 \text { feet } \equiv 1 \text { mile }
$$

Also commit to memory this metric-to-English bridge conversion for distance.

$2.54 \mathrm{~cm} \equiv 1$ inch

Then cover the answer below and apply the steps and conversions above to this problem.
Q. ? feet $=1.00$ meter

Answer

Since the wanted unit is English, and the given unit is metric, an English/metric bridge is needed.

Step 1: Head for the bridge. Since the given unit (meters) is metric system, convert to the metric unit used in the bridge conversion $(2.54 \mathrm{~cm}=1 \mathrm{inch})$-- centimeters.
? feet $=1.00$ meter $\cdot \frac{1 \mathrm{~cm}}{10^{-2} \mathrm{~m}} \cdot-\frac{\mathrm{cm}}{}$
Note the start of the next conversion. Since cm is not the wanted answer unit, cm must be put in the next conversion where it will cancel. If you start the "next unit to cancel" conversion automatically after finishing the prior conversion, it helps to arrange and choose the next conversion.

Adjust and complete your work if needed.

Step 2: Complete the bridge that converts to the system of the answer: English units.
? feet $=1.00$ meter $\cdot \frac{1 \mathrm{~cm}}{10^{-2} \mathrm{~m}} \cdot \frac{1 \text { inch }}{2.54 \mathrm{~cm}} \cdot \square$ inch

Step 3: Get rid of the unit you've got. Get the unit you want.

$$
\text { ? feet }=1.00 \text { metex } \cdot \frac{1 \mathrm{~cm}}{10^{-2} \mathrm{~m}} \cdot \frac{1 \text { inch }}{2.54 \mathrm{~cm}} \cdot \frac{1 \text { foot }}{12 \text { inches }}=3.28 \text { feet }
$$

The answer tells us that 1.00 meter (the given quantity) is equal to 3.28 feet.
Some science problems take 10 or more conversions to solve. However, if you know that a bridge conversion is needed, "heading for the bridge" breaks the problem into pieces, which will simplify your navigation to the answer.

Practice: Use the inch-to-centimeter bridge conversion above. Start by doing every other problem. Do more if you need more practice.

1. $? \mathrm{~cm}=12.0$ inches • \qquad $=$
2. ? inches $=1.00$ meters • \qquad - \qquad
3. For ? inches $=760 . \mathrm{mm}$
a. To what unit to you aim to convert the given in the initial conversions? Why?
b. Solve: ? inches $=760 . \mathrm{mm}$
4. $? \mathrm{~mm}=0.500$ yards
5. For $? \mathrm{~km}=1.00$ mile , to convert using $1 \mathrm{inch}=2.54 \mathrm{~cm}$,
a. To what unit to you aim to convert the given in the initial conversions? Why?
b. Solve: ? km = 1.00 mile
6. Use as a bridge for metric mass and English weight units, 1 kilogram = 2.2 lbs .
? grams = 7.7 lbs
7. Use the "soda can" volume conversion (12.0 fluid ounces = 355 mL).
? fl. oz. $=2.00$ liters
8. For the following symbols, write the name of the atom.
a. $C=$ \qquad b. $\mathrm{Cl}=$ \qquad c. $\mathrm{Ca}=$ \qquad

ANSWERS

In these answers, some but not all of the unit cancellations are shown. The definition $1 \mathrm{~cm}=10 \mathrm{~mm}$ may be used for mm to cm conversions. Doing so will change the number of conversions but not the answer.

1. $? \mathrm{~cm}=12.0$ inches $\cdot \underline{2.54 \mathrm{~cm}}=12.0 \cdot 2.54=30.5 \mathrm{~cm}$ (check how many cm are on a 12 inch ruler) 1 inch
2. ? inches $=1.00$ meters $\cdot \frac{1 \mathrm{em}}{10^{-2} \mathrm{~m}} \cdot \frac{1 \mathrm{inch}}{2.54 \mathrm{~cm}}=\frac{1}{2.54} \times 10^{2}=0.394 \times 10^{2} \mathrm{in} .=39.4$ inches

3a. Aim to convert the given unit (mm) to the one unit in the bridge conversion that is in the same system (English or metric) as the given. Cm is the bridge unit that is in the same measurement system as mm .

3b. ? inches $=760 . \mathrm{mm} \cdot \frac{10^{-3} \text { meter }}{1 \mathrm{~mm}} \cdot \frac{1 \mathrm{~mm}}{10^{-2} \mathrm{~m}} \cdot \frac{1 \text { inch }}{2.54 \mathrm{~cm}}=\frac{760 \times 10^{-1}}{2.54} \mathrm{in} .=29.9$ inches SF: 760 ., with the decimal after the 0 , means 3 sf. Metric definitions and 1 have infinite sf. The answer must be rounded to 3 sf (see Module 3).
4. $? \mathrm{~mm}=0.500 \mathrm{yd} . \cdot \frac{3 \mathrm{ft} .}{1 \mathrm{yd} .} \cdot \frac{12 \mathrm{in} .}{1 \mathrm{ft}} \cdot \frac{2.54 \mathrm{~cm}}{1 \mathrm{inch}} \cdot \frac{10^{-2} \text { meter }}{1 \mathrm{~cm}} \cdot \frac{1 \mathrm{~mm}}{10^{-3 \mathrm{~m}}}=457 \mathrm{~mm}$

5a. Aim to convert the given unit (miles) to the bridge unit in the same system (English or metric) as the given. Inches is in the same system as miles.

5b. ? $\mathrm{km}=1.00$ mile $\cdot \frac{5,280 \mathrm{ft} \cdot}{1 \text { mile }} \cdot \frac{12 \mathrm{in} .}{1 \mathrm{ft}} \cdot \frac{2.54 \mathrm{~cm}}{1 \mathrm{inch}} \cdot \frac{10^{-2 \mathrm{~m}}}{1 \mathrm{~cm}} \cdot \frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}}=1.61 \mathrm{~km}$ SF: Assume an integer 1 that is part of any equality or conversion is exact, with infinite sf.
6. ? grams $=7.7 \mathrm{lbs} \cdot \frac{1 \mathrm{~kg}}{2.2 \mathrm{lb}} \cdot \frac{10^{3} \mathrm{grams}}{1 \mathrm{~kg}}=3.5 \times 10^{3} \mathrm{grams}$

SF: 7.7 and 2.2 have 2 sf. A 1 and metric-prefix definitions have infinite sf. Round the answer to 2 sf.
7. ? fluid ounces $=2.00$ liters $\cdot 1 \mathrm{~mL} \cdot \underline{12.0 \mathrm{fl} . \mathrm{oz} .}=67.6 \mathrm{fl} . \mathrm{oz} . \quad$ (Check this answer on $10^{-3} \mathrm{~L} \quad 355 \mathrm{~mL} \quad$ any 2-liter soda bottle.)
8a. $\mathrm{C}=$ Carbon
b. $\mathrm{Cl}=$ Chlorine
c. $\mathrm{Ca}=$ Calcium

Lesson 4E: Ratio Unit Conversions

Long Distance Cancellation

The order in which numbers are multiplied does not affect the result. For example, $1 \times 2 \times 3$ has the same answer as $3 \times 2 \times 1$.

The same is true when multiplying symbols or units. While some sequences may be easier to set up or understand, from a mathematical perspective the order of multiplication does not affect the answer.

The following problem is an example of how units can cancel in separated as well as adjacent conversions. Try

Q1: Multiply. Cancel units that cancel. Write the answer number and its unit.

This answer means that a speed of 12 meters/sec is the same as 27 miles/hour.

Ratio Units in the Answer

In these lessons, we will use the term single unit to describe a unit that has one kind of base unit in the numerator but no denominator (which means the denominator is $\mathbf{1}$). Single units measure amounts. Meters, grams, minutes, milliliters, and cm^{3} are all single units. These base units may have prefixes or powers, but must otherwise be or be equivalent to one unit that measures a fundamental quantity.

We will use the term ratio unit to describe a fraction that has one base unit in the numerator and one base unit in the denominator. If a problem asks you to find

$$
\text { meters per second or meters/second or } \underset{\text { second }}{\underline{\text { meters }}} \text { or } \mathrm{m} \cdot \mathrm{~s}^{-1}
$$

all of those terms are identical, and the problem is asking for a ratio unit. During conversion calculations, all ratio units should be written in the fraction form with a top and bottom.

In Module 11, we will address in detail the different characteristics of single units and ratio units. For now, the distinctions above will allow us to solve problems.

Converting the Denominator

In solving for single units, we have used a starting template that includes canceling a given single unit.

$$
\begin{aligned}
& \text { When solving for single units, begin with } \\
& \quad \text { ? unit WANTED }=\text { \# and UNIT given } \bullet \\
& \text { UNIT given }
\end{aligned}
$$

When solving for ratio units, we may need to cancel a denominator (bottom) unit to start a problem. To do so, we will loosen our starting rule to say this.

When Solving With Conversion Factors

If a unit to the right of the equal sign, in or after the given, on the top or the bottom,

- matches a unit in the answer unit, in both what it is and where it is, circle that unit on the right side and do not convert it further;
- is not what you WANT, put it where it will cancel, and convert until it matches what you WANT.

After canceling units, if the unit or units to the right of the equal sign match the answer unit, stop adding conversions, do the math, and write the answer.

Q2: Use the rule above to solve.

$$
\frac{? \mathrm{~cm}}{\min .}=0.50 \frac{\mathrm{~cm}}{\mathrm{~s}} \cdot \square=
$$

Answer

Start by comparing the wanted units to the given units.
Since you WANT cm on top, and are given cm on top, circle cm to say, "The top is done. Leave the top alone."

On the bottom, you have seconds, but you WANT minutes. Put seconds where it will cancel. Convert to minutes on the bottom.

When the units on the right match the units you WANT on the left for the answer, stop conversions and do the math.

Practice A: Do Problem 2. Then do Problem 1 if you need more practice.

1. $\quad \frac{\mathrm{g}}{\mathrm{dL}}=355 \frac{\mathrm{~g}}{\mathrm{~L}} \cdot \square=$
2. $\frac{? \text { meters }}{\text { second }}=\frac{4.2 \times 10^{5} \text { meters }}{\text { hour }}$ \qquad - \qquad $=$

Converting Both Top and Bottom Units

Many problems require converting both numerator and denominator units. In the following problem, an order to convert both units is specified. Write what must be placed in the blanks to make legal conversions, cancel units, do the math, and write then check your answer below.

Q3. ? meters
 -- minutes $=$

Answer

$$
\frac{? \text { meters }}{\mathrm{s}}=740 \frac{\mathrm{~cm}}{\mathrm{~min}} \cdot \frac{10^{-2} \text { meters }}{1 \mathrm{~cm}} \cdot \frac{1 \mathrm{~min}}{60(\mathrm{~s}}=0.12 \frac{\text { meters }}{\mathrm{s}}
$$

In the given on the right, cm is not the unit WANTED on top, so put it where it will cancel, and convert to the unit you want on top.
Next, since minutes are on the bottom on the right, but seconds are WANTED, put minutes where it will cancel. Convert to the seconds WANTED.

When chaining conversions, which unit you convert first - the top or bottom unit makes no difference. The order in which you multiply factors does not change the answer.
On the following problem, no order for the conversions is specified. Add legal conversions in any order, solve, then check your answer below. Before doing the math, double check each conversion, one at a time, to make sure it is legal.

$$
\text { Q4. } \frac{\text { centigrams }}{\text { liter }}=0.550 \times 10^{-2} \frac{\mathrm{~g}}{\mathrm{~mL}}
$$

Answer: Your conversions may be in a different order.

Practice B Do every other part, and more if you need more practice.

1. On these, an order of conversion is specified. Write what must be placed in the blanks to make legal conversions, then solve.
a. $? \frac{\text { miles }}{\text { hour }}=\frac{80.7 \text { feet }}{\text { sec. }} \longrightarrow$
b. $? \frac{\text { meters }}{\mathrm{s}}=\frac{250 . \text { feet }}{\min .} \longrightarrow \frac{\min .}{} \cdot \frac{}{1 \text { inch }} \cdot$
2. Add conversions in any order and solve.
a. $? \frac{\mathrm{~km}}{\text { hour }}=\frac{1.17 \times 10^{4} \mathrm{~mm}}{\mathrm{sec}}$
b. ? $\frac{\mathrm{ng}}{\mathrm{mL}}=\frac{47 \times 10^{2} \mathrm{mg}}{\mathrm{dm}^{3}}$
c. ? feet $=95$ meters
sec. minute

ANSWERS

Practice A

1. $\frac{? \mathrm{~g}}{\mathrm{dL}}=355 \frac{\mathrm{~g}}{\mathrm{~L}} \cdot \frac{10^{-1} \mathrm{~L}}{1 \mathrm{dL}}=35.5 \frac{\mathrm{~g}}{\mathrm{dL}}$
2. $\frac{? \text { meters }}{\mathrm{s}}=\frac{4.2 \times 10^{5} \text { meters }}{\text { hour }} \frac{1 \text { hour }}{60 \mathrm{~min}} \cdot \frac{1 \mathrm{~min}}{60 \mathrm{~s}}=1.2 \times 10^{2} \underline{\frac{\text { meters }}{\mathrm{s}}}$

Practice B

1a. $? \frac{\text { miles }}{\text { hour }}=\frac{80.7 \text { feet }}{\text { sec. }} \cdot \frac{1 \mathrm{mile}}{5,280 \text { feet }} \cdot \frac{60 \mathrm{sec} .}{1 \mathrm{~min} .} \cdot \frac{60 \mathrm{~min} .}{1 \text { hour }}=55.0 \frac{\mathrm{miles}}{\text { hour }}$
$1 \mathrm{~b} . ? \frac{\text { meters }}{\mathrm{sec} .}=\frac{250 \text { feet }}{\mathrm{min} .} \cdot \frac{1 \mathrm{~min} .}{60 \mathrm{sec} .} \cdot \frac{12 \text { inches }}{1 \mathrm{foot}} \cdot \frac{2.54 \mathrm{~cm}}{1 \mathrm{inch}} \cdot \frac{10^{-2} \mathrm{~meter}}{1 \mathrm{~cm}}=1.27 \frac{\text { meters }}{\mathrm{s}}$
(SF: 250. due to the decimal has 3 sf , all other conversions are definitions, answer is rounded to 3 sf)
2a. ? $\frac{\mathrm{km}}{\text { hour }}=\frac{1.17 \times 10^{4} \mathrm{~mm}}{\mathrm{sec}} \cdot \frac{10^{-3} \mathrm{~m}}{1 \mathrm{~mm}} \cdot \frac{1 \mathrm{~km}}{10^{3} \mathrm{~m}} \cdot \frac{60 \mathrm{sec}}{1 \mathrm{~min}} \cdot \frac{60 \mathrm{~min}}{1 \text { hour }}=42.1 \frac{\mathrm{~km}}{\mathrm{hr}}$
2b. $? \frac{\mathrm{ng}}{\mathrm{mL}}=\frac{47 \times 10^{2} \mathrm{mg}}{\mathrm{dm}^{3}} \cdot \frac{1 \mathrm{dm}^{3}}{1 \mathrm{~L}} \cdot \frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}} \cdot \frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}} \cdot \frac{1 \mathrm{ng}}{10^{-9} \mathrm{~g}}=4.7 \times 10^{6} \frac{\mathrm{ng}}{\mathrm{mL}}$
2c. Hint: an English/metric bridge conversion for distance units is needed. Head for the bridge: first convert the given metric distance unit to the metric distance unit used in your known bridge conversion.
$\begin{aligned} & \star \star \star \star \star \\ & ? \frac{\text { feet }}{\text { sec. }}= \\ & 95 \frac{\text { meters }}{\mathrm{min}} \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \cdot \frac{1 \mathrm{~cm}}{10^{-2} \mathrm{~m}} \cdot \frac{1 \mathrm{inch}}{2.54 \mathrm{~cm}} \cdot \frac{1 \text { (foot }}{12 \mathrm{in} .}=5.2 \frac{\text { feet }}{\mathrm{s}}\end{aligned}$

Lesson 4F: The Atoms - Part 3

To continue to learn the most often encountered atoms, your assignment is:

- For the first 20 atoms, plus the first and last two columns in the periodic table, memorize the name, symbol, and the position of the atom. For each atom, given either its symbol or name, be able to write the other.
- Be able to fill in a blank table with those names and symbols.

```
* * * * *
```

Periodic Table

Lesson 4G: Review Quiz For Modules 1-4

Use a calculator and scratch paper, but no notes or tables. Write answers to calculations in proper significant figures. Except as noted, convert your answers to scientific notation.
To answer multiple choice questions, it is suggested that you

- Solve as if the question is not multiple choice,
- Then circle your answer among the choices provided.

Set a 20-minute limit, then check your answers after the Summary that follows.

1. (From Lesson 1C): $\frac{10^{23}}{\left(1.25 \times 10^{10}\right)\left(4.0 \times 10^{-6}\right)}=$
a. 2.0×10^{18}
b. 5.0×1018
c. 0.20×10^{19}
d. 2.0×10^{20}
e. 5.0×10^{-19}
2. $\left(\right.$ Lesson 1B): $\left(-60.0 \times 10^{-16}\right)-\left(-4.29 \times 10^{-14}\right)=$
a. 4.8×10^{-16}
b. 3.69×10^{-14}
c. 3.7×10^{-14}
d. 4.8×10^{-16}
e. 4.89×10^{-14}
3. (Lesson 2 A): 15 mL of liquid water has what mass in kg ?
a. $1.5 \times 10^{-3} \mathrm{~kg}$
b. $15 \times 10^{-4} \mathrm{~kg}$
c. $1.5 \times 10^{-4} \mathrm{~kg}$
d. $1.5 \times 10^{-4} \mathrm{~kg}$
e. $1.5 \times 10^{-2} \mathrm{~kg}$
4. $\left(\right.$ Lesson 2D): $5.00 \times 10^{-2} \frac{\mathrm{~L}^{3} \cdot \mathrm{~m}}{\mathrm{~s}} \cdot 2.00 \mathrm{~m} \cdot \frac{2.0 \mathrm{~s}^{3}}{8.00 \times 10^{-5} \mathrm{~L}^{2}} \cdot($ an exact 2$)=$
a. $1.00 \times 10^{-4} \mathrm{~m}^{2} \cdot \mathrm{~s}^{2} \cdot \mathrm{~L}$
b. $5.00 \times 10^{3} \mathrm{~m}^{2} \cdot \mathrm{~s}^{2} \cdot \mathrm{~L}$
c. $5.0 \times 10^{3} \mathrm{~m}^{2} \cdot \mathrm{~s}^{2} \cdot \mathrm{~L}$
d. $1.0 \times 10^{-3} \mathrm{~m} \cdot \mathrm{~s}^{2} \cdot \mathrm{~L}$
e. $5.0 \times 10^{-3} \mathrm{~m}^{2} \cdot \mathrm{~s}^{2} \cdot \mathrm{~L}$
5. (Lesson 3B): State your answer in proper significant figures $\rightarrow \quad 1.008$ but do not convert to scientific notation. $+\quad 238.00$
a. 255.00
b. 255.0
c. 255.008
d. 255.1
e. 255.01
$\underline{16.00}$
6. (Lesson 4D): If $1 \mathrm{~kg}=2.20 \mathrm{lb}$., solve
$? \mathrm{mg}=4.0 \times 10^{-2} \mathrm{lb}$.
a. $8.8 \times 10^{-7} \mathrm{mg}$
b. $8.8 \times 10^{4} \mathrm{mg}$
c. $1.8 \times 10^{-7} \mathrm{mg}$
d. $1.8 \times 10^{4} \mathrm{mg}$
e. $8.8 \times 10^{1} \mathrm{mg}$
7. (4E): $\quad \frac{\mathrm{kg}}{\mathrm{mL}}=\frac{2.4 \times 10^{5} \mu \mathrm{~g}}{\mathrm{dm}^{3}}$
a. $2.4 \times 10^{-7} \frac{\mathrm{~kg}}{\mathrm{~mL}}$
b. $2.4 \times 10^{5} \frac{\mathrm{~kg}}{\mathrm{~mL}}$
c. $2.4 \times 10^{-10} \frac{\mathrm{~kg}}{\mathrm{~mL}}$
d. $2.4 \times 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~mL}}$
e. $2.4 \times 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~mL}}$
8. (Lesson 3D): For the following symbols, write the name of the atom.
a. $\mathrm{K}=$ \qquad b. $S=$ \qquad c. $\mathrm{Na}=$ \qquad

SUMMARY: Conversion Factors

1. Conversion factors are fractions or ratios made from two entities that are equal or equivalent. Conversion factors have a value of one.
2. An equality can be written as a conversion or fraction or ratio that is equal to one.
3. When solving a problem, first write the unit WANTED, then an = sign.
4. Solving for single units, start conversion factors with

$$
\text { ? unit WANTED }=\text { \# and UNIT given • }
$$

5. Finish each conversion factor with the answer unit or with a unit that takes you closer to the answer unit.
6. In making conversions, set up units to cancel, but add numbers that make legal conversions.
7. Chain your conversions so that the units cancel to get rid of the unit you've got and get to the unit you WANT.
8. When the unit on the right is the unit of the answer on the left, stop conversion factors. Complete the number math. Write the answer and its unit.
9. Units determine the placement of the numbers to get the right answer.
10. If you plan on a career in a science-related field, add these to your flashcard collection. Front-side (with notch at top right):

Back Side -- Answers

1 inch $=$? cm	2.54 cm
$1 \mathrm{~kg}=$? pounds	2.2 lb.
12 fluid oz. $=$? mL	355 mL

ANSWERS - Module 1-4 Review Quiz

Only partial solutions are provided below.

1. a. 2.0×10^{18}

$$
1 / 5 \times 10^{23-10+6}=0.20 \times 10^{19}=2.0 \times 10^{18}
$$

2. b. $3.69 \times 10^{-14}\left(+4.29 \times 10^{-14}\right)-\left(0.600 \times 10^{-14}\right)=$ net doubt in hundredths place
3. e. $1.5 \times 10^{-2} \mathrm{~kg} \quad 1.00 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}=1 \mathrm{~mL} \mathrm{H} \mathrm{O} ; 1.00 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}=1 \mathrm{~L} \mathrm{H}_{2} \mathrm{O}$
4. c. $5.0 \times 10^{3} \mathrm{~m}^{2} \cdot \mathrm{~s}^{2} \cdot \mathrm{~L} \quad(2 \mathrm{sf})$
5. e. 255.01 (Adding and subtracting, round to highest place with doubt.)
6. d. $1.8 \times 10^{4} \mathrm{mg}$
7. a. $2.4 \times 10^{-7} \mathrm{~kg} / \mathrm{mL} \quad \mathrm{L}=\mathrm{dm}^{3}$

8a. $K=$ Potassium
b. $S=$ Sulfur
c. $\mathrm{Na}=$ Sodium

